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Abstract

Since the discovery of cosmic rays over one hundred years ago, many experiments have studied

their properties. However, a definitive answer to the questions of where cosmic rays originate and

how they are produced is still not known. Over the last several decades, a much more detailed

understanding of high energy cosmic rays has begun to materialize. In particular, the cosmic-ray

energy spectrum, with its transitions at 3 PeV (the “knee”) and 3 EeV (the “ankle”), has been

extensively investigated. Based on magnetic confinement arguments, it’s generally believed that

the energy range between the knee and ankle is where the transition from galactic to extragalactic

sources of cosmic rays. The ability to distinguish between high energy cosmic rays of different

composition and study the relative mass abundances of cosmic rays in this transition region can

provide invaluable insight in answering the open questions surrounding the origins of cosmic rays.

This work focuses on measuring the composition-resolved cosmic-ray energy spectrum at and

above the all-particle knee using one year of data collected by the IceCube Observatory. Sepcifically,

we focus on making a two mass group spectrum measurement from 106.4 GeV to 107.8 GeV. The first

mass group, referred to as the “light” mass group, is modeled using proton and helium cosmic rays,

while the second, “heavy” mass group, is modeled using oxygen and iron cosmic rays. We observe

a clear softening of the light spectrum near 3 PeV, while the energy spectrum for the heavy mass

group follows a power-law like structure with a spectral index of ∼ 2.7 throughout the entire energy

range considered. The observed transition from a primarily light to a heavy-dominant spectrum

takes place near 107.1 GeV. This feature is characteristic of a potential rigidity-dependent cutoff,

or Peters cycle. The change in relative mass abundance could also indicate a possible transition in

the source population of cosmic rays.

In addition, a study to determine whether or not the light, heavy, or all-particle cosmic-ray

energy spectra vary as a function of arrival direction is also presented. This marks the first time an

analysis of this kind has been conducted using the IceCube Observatory. No statistically significant

spectrum deviations were observed. The results from this analysis can be used to set a limit on

the range of possible spectral deviations.
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Chapter 1

Introduction

This thesis presents an analysis using data collected by the IceCube Observatory to study the

cosmic-ray energy spectrum and composition at and above the all-particle spectrum knee. Specif-

ically, a two-mass-group flux measurement from 6.4 ≤ log10(E/GeV) ≤ 7.8 is presented. This

energy region is particularly interesting as it’s generally believed to mark the beginning of the

transition from Galactic to extragalactic sources of cosmic rays. The two mass groups, referred

to as “light” and “heavy”, are modeled by proton/helium and oxygen/iron cosmic-ray primaries,

respectively. In addition to a robust two-component flux measurement, a search for variations of

the energy spectrum as a function of arrival direction is conducted for both the light and heavy

mass groups, as well as for the all-particle spectrum. This provides information about any potential

local sources of cosmic rays and, because the observed arrival direction is influenced by magnetic

fields, the environment through which they propagate.

This chapter begins with a brief historical overview of cosmic-ray physics, then summarizes

experimental results and our current understanding of the cosmic-ray energy spectrum and mass

composition, followed by a discussion of extensive air showers. In Chapter 2, we present an overview

of the detector components of the IceCube Observatory and the low-level signals recorded by the

detector. Then in Chapter 3 we discuss the reconstruction algorithms used to map the signals

measured by the detector to high-level parameters that are characteristic of primary cosmic ray

particles. Chapter 4 focuses on using the reconstructed parameters from Chapter 3 to determine
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a primary particle composition and energy for each air shower detected with IceCube. Next, an

unfolding technique used to correct for the known detector response is presented in Chapter 5.

Finally, the results for the light, heavy, and all-particle flux measurement are presented in Chapter

6, while the study of spectral variations as a function of arrival direction are shown in Chapter 7.

It should be noted that while previous and current work done by the IceCube collaboration [1]

have focused on maximizing the number of composition groups analyzed, this work has a slightly

different motivation. Here, we are concerned not only with producing a precise cosmic-ray compo-

sition measurement, but also studying how the energy spectrum varies as a function of sky position.

To this end, in order to maximize the available statistics, while still providing composition separa-

tion, two mass groups were used.
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1.1 Background

The history of studying cosmic rays dates back well over a hundred years. The discovery of

ionizing radiation and the advent of the electroscope prompted the observation of an ambient level

of background radiation. This radiation was originally thought to be produced only by known

sources of radiation in the environment (e.g. radon). However, in a series of hot air balloon flights

in 1911 and 1912, Victor Hess used electroscopes to measure the ambient radiation intensity as a

function of altitude [2]. His findings, shown in Figure 1.1, demonstrated that while radiation levels

initially decreased until an altitude of roughly 1 km was reached, the level of ionizing radiation then

began to continually increase with altitude. This indicated that there was also a cosmic radiation

component originating beyond Earth’s atmosphere in addition to terrestrial radiation. Higher

altitude balloon experiments in 1913 and 1914 by Werner Kolhörster confirmed Hess’ findings [3].

Hess’ balloon experiments are regarded as the discovery flight of cosmic rays and he was awarded

the Nobel Prize in Physics in 1936 for his work.

Robert Millikan, who coined the term “cosmic rays”, believed that cosmic rays were gamma rays,

while others believed the radiation was composed of charged particles. In 1929, Walther Bothe and

Kolhörster, using a coincident detection technique with two Geiger-Müller tubes, discovered that

cosmic rays are indeed primarily charged particles [4], although the name cosmic rays remained.

Then, in 1930 Bruno Rossi predicted an anisotropy in the intensity of cosmic rays which depended

on their charge. The “East-West effect” was measured in the same year, providing evidence that

cosmic rays are mostly positively charged particles.

In 1934, Rossi observed coincident detection of cosmic rays between detectors that were widely

separated from one another [5]. Then, in 1939, Pierre Auger discovered large, extensive collections

of correlated particles, called air showers, with estimated energies up to 1015 eV [6]. These showers

were in fact secondary particles from highly energetic primary particles interacting in Earth’s

atmosphere. Ever since the discovery of extensive air showers, scientists have constructed detectors

with larger and larger areas, probing incredibly high energy scales.
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Figure 1.1: Ionization rate as a function of altitude measurements by (left) Hess in 1912 [2] and
(right) Kolhörster from 1913-1914 [3]. The rise in rate with increasing altitude is attributed to the
extraterrestrial origin of the penetrating radiation.

1.2 Energy Spectrum

Scientists have studied cosmic rays over an incredibly large energy range. The highest energy

cosmic ray ever recorded was detected in 1991 by the Fly’s Eye detector in Utah. The detected

event had an estimated energy of 3.2 × 1020 eV [7], orders of magnitude larger than the highest

man-made energies reached at the Large Hadron Collider (LHC).

The cosmic-ray energy spectrum, defined to be the number of particles at a given energy E per

unit area, time, solid angle, and energy

J(E) =
dN

dE dA dΩ dt
(1.1)

has been measured over ten orders of magnitude in particle energy. Figure 1.2 shows the cosmic-

ray energy spectrum as measured by several different experiments. One of the most remarkable
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characteristics of the cosmic ray spectrum is that it is approximately governed by a power law:

J(E) ∝ E−γ (1.2)

where E is the cosmic-ray energy and γ is the spectral index. However, there are a couple of

notable transitions in the spectrum where the spectral index changes.

γ =





2.7 for E < 3× 1015eV

3.1 for 3× 1015eV < E < 3× 1018eV

2.6 for E > 3× 1018eV

The first of these transitions occurs at roughly 3 × 1015 eV where there is a slight steepening

of the spectrum and the spectral index changes from ∼ 2.7 to ∼ 3.1 [8]. This downward bend is

fittingly referred to as the “knee” of the cosmic-ray spectrum. The second transition occurs near

3 × 1018 eV where there is a hardening in the spectrum and the spectral index transitions from

∼ 3.1 to ∼ 2.6. In keeping with the same analogy, this feature is referred to as the “ankle” of the

cosmic ray spectrum.

It’s worth noting that there are hints of additional spectral index changes between the knee and

ankle. Figure 1.3 shows the cosmic-ray energy spectrum which has been scaled by a factor of E2.6

to compress the spectrum and emphasize changes in the spectral slope. A faint spectral hardening

at approximately 1017 eV, the so-called “second knee”, has been observed by both the KASCADE-

Grande [9] and IceTop [10] experiments. However, additional high-precision measurements are

needed for further study of these finer structures.

Cosmic rays, as they move through magnetic fields throughout the universe, are subject to

deflections by the Lorentz force. The gyroradius, or Larmor radius, for a charged particles in a

magnetic field is given by:

RL =
E

c|Z|eB = 1.1× 10−3pc
( E

TeV

) 1

|Z|
( B
µG

)−1
(1.3)

where E is the energy of the particle, Z is the charge of the particle in units of e, c is the speed

of light in vacuum, and B is the magnetic field strength. Additionally, the rigidity R = RLBc of a
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Overview of the cosmic ray spectrum. Approximate energies of the breaks in the spectrum commonly
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Figure 1.1 Cosmic-ray energy spectrum as measured with a variety of experiments [5]. The
spectrum behaves as a power law, with spectral breaks visible at the “knee” (⇠3 PeV) and

“ankle” (⇠4 EeV).
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Figure 1.2: Overview of the cosmic-ray energy spectrum. Transitions in the power law spectral
index at 3× 1015 eV (the knee) and 3× 1018 eV (the ankle) are indicated by arrows. Figure from
[11].
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Figure 30.8: The all-particle spectrum as a function of E (energy-per-nucleus)
from air shower measurements [91–106].

Measurements of flux with air shower experiments in the knee region differ by as
much as a factor of two, indicative of systematic uncertainties in interpretation of the
data. (For a review see Ref. 90.) In establishing the spectrum shown in Fig. 30.8, efforts
have been made to minimize the dependence of the analysis on the primary composition.
Ref. 99 uses an unfolding procedure to obtain the spectra of the individual components,
giving a result for the all-particle spectrum between 1015 and 1017 eV that lies toward
the upper range of the data shown in Fig. 30.8. In the energy range above 1017 eV, the
fluorescence technique [107] is particularly useful because it can establish the primary
energy in a model-independent way by observing most of the longitudinal development
of each shower, from which E0 is obtained by integrating the energy deposition in
the atmosphere. The result, however, depends strongly on the light absorption in the
atmosphere and the calculation of the detector’s aperture.

Assuming the cosmic-ray spectrum below 1018 eV is of galactic origin, the knee could
reflect the fact that most cosmic accelerators in the Galaxy have reached their maximum

December 1, 2017 09:36

Figure 1.3: Weighted energy spectrum to compress spectrum and highlight spectrum differences.
Figure from [12].

particle is often used when describing the characteristics of cosmic rays. The Milky Way is ∼ 300

pc thick and is permeated with a magnetic field B ∼ 3 µG [13]. Particles with PeV scale energies

around the knee have a Larmor radius RL(E = PeV) ∼ 0.3 pc and can be magnetically confined

within our galaxy. While particles at EeV scale energies near the ankle have a much larger Larmor

radius RL(E = EeV) ∼ 300 pc and begin to escape from our galaxy. Based on these magnetic

confinement arguments, cosmic rays at and below the knee are generally believed to originate from

within our galaxy, while cosmic rays above the ankle are thought to be sourced from extragalctic

origins. Note that there is additional evidence, e.g. recent EeV-scale anisotropy measurements by

the Pierre Auger Observatory [14], that are consistent with an extragalactic origin of high-energy

cosmic rays. This makes the energy range between the knee and ankle, where the transition from

to extra sources of cosmic rays is believed to happen, an extremely interesting region for scientific
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exploration and is a motivation for the work presented in this thesis.

At the highest energies, there is an observed cutoff in the cosmic-ray energy spectrum that

could arise from either a fall in intensity of the extragalactic source population or from high energy

cosmic rays interacting with cosmic microwave background (CMB) photons. Above ∼ 5× 1019 eV,

protons can lose energy through interacting with CMB photons:

p+ γCMB → ∆+ → n+ π+ (1.4)

p+ γCMB → ∆+ → p+ π0 (1.5)

Above this energy scale, known as the Greisen-Zatsepin-Kuzmin (GZK) limit, the mean free path

of protons is limited to a few tens of Mpc and a suppression in the observed cosmic-ray flux is

predicted.

Our conventional understanding of the origin of Galactic cosmic rays is that they may be

produced by supernova remnants through an acceleration mechanism first proposed by Fermi in

1949 [15]. With this acceleration mechanism, in which cosmic rays interact with moving magnetic

fields, the maximum energy a particle may be accelerated to is proportional to its electric charge

Z. For a maximum achievable energy for protons Ep, helium is expect to reach a maximum energy

of EHe = 2Ep, for lithium ELi = 3Ep, and so on. This scenario, first proposed by Peters in

[16], predicts a rigidity-dependent cutoff sequence of cosmic rays known as a Peters cycle. These

sequential cutoffs result in an increase in the average cosmic-ray mass with energy. Likewise, many

models of the energy spectrum describe structures in the spectrum, such as the knee and ankle,

as the interplay of various source populations which result in distinct energy spectra for different

cosmic ray species. See [17] and [18] for two instances of such models. It’s worth noting there are

other proposed mechanisms, e.g. a Galactic wind termination shock, by which cosmic rays may be

accelerated to energies between the knee and ankle [19] and [20].

Generally, the cosmic-ray energy spectrum and composition are intimately intertwined in the-

ories related to cosmic-ray production and propagation. Thus knowledge of the mass composition

of cosmic rays is crucial in furthering our understanding of the origin of high-energy cosmic rays.
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1.3 Composition

The full cosmic-ray spectrum is comprised of ∼90.8% protons, ∼9.1% helium nuclei, and ∼0.12%

heavier nuclei with Z > 2 [21]. The relative abundance of hadronic cosmic rays follows the chemical

composition of the solar system, shown in Figure 1.4, apart from elements with Z = 3-5, 9, and 21-

25 where the cosmic ray abundances are larger. This mismatch originates from spallation processes

in which cosmic-ray nuclei fragment as they propagate through the interstellar medium.

No. 2, 2009 ELEMENTAL COMPOSITION AND ENERGY SPECTRA OF GCRs 1669

Figure 6. CRIS elemental GCR spectra during solar maximum. Arbitrary scale
factors have been applied to the intensity of each element for presentation of the
spectral shapes. The dashed curves are the result of a cosmic-ray propagation
model calculation. The solid curves show the fits used to determine relative
abundances. The dotted line at 160 MeV nucleon−1 shows where relative
abundances are reported (Table 1).

factor of 0.27 than that measured at solar minimum, allowing
for a comparison of the absolute intensity levels in the two time
periods. The composition is energy dependent, and this energy
was chosen because the CRIS sensitivity for all species between
boron and nickel overlaps at this point.

The relative abundances were determined by individually
fitting each spectrum of seven intensity data points with a
parabola in log(Intensity) versus log(Energy/nucleon). Cobalt
did not have sufficient statistics for a good fit, so manganese
was used as a template for the shape and only the overall
normalization was fitted. The results of the fits are indicated by
the solid curves in Figures 5 and 6. The relative abundances were
taken from the ratios of the fit curves at 160 MeV nucleon−1.
The uncertainties in the relative abundances were taken to
be similar to those of the data themselves, with a statistical
contribution based on the total number of counts. The residual
systematic uncertainties will tend to cancel when comparing
adjacent elements. In most cases, the statistical uncertainty is
much smaller than the systematic contribution.

Our observed GCR abundances for solar minimum are plotted
in Figure 7, supplemented with GCR observations for Z < 5
reported elsewhere (see Wang et al. 2002; de Nolfo et al. 2006).
The data are given at 160 MeV nucleon−1 and are normalized
to Si ≡ 1000. These abundances are compared with solar
system abundances given by Lodders (2003). The odd-Z heavy
nuclei, as well as a few notable even-Z nuclei (Be, Ca, Ti, and
Cr), show significant GCR overabundances. This well known
property of cosmic-ray abundances demonstrates the effect of

Table 1
CRIS Relative Elemental Abundances at 160 MeV Nucleon−1

Element Solar Minimum Solar Maximum

B 1803.8 ± 10.4 1986.4 ± 11.3
C 7337.0 ± 18.4 6780.2 ± 18.4
N 1713.7 ± 8.4 1836.1 ± 9.0
O 7082.6 ± 16.0 6520.6 ± 15.6
F 101.8 ± 1.9 123.6 ± 2.1
Ne 998.7 ± 5.6 1050.4 ± 5.8
Na 189.6 ± 2.4 211.5 ± 2.5
Mg 1368.2 ± 6.1 1367.3 ± 6.0
Al 202.7 ± 2.3 226.3 ± 2.4
Si 1000.0 ± 5.0 1000.0 ± 4.8
P 26.2 ± 0.8 34.2 ± 0.8
S 157.0 ± 1.9 181.2 ± 1.9
Cl 24.9 ± 0.7 38.4 ± 0.9
Ar 58.8 ± 1.1 78.5 ± 1.2
K 41.6 ± 0.9 62.5 ± 1.1
Ca 124.8 ± 1.5 155.8 ± 1.6
Sc 26.0 ± 0.7 35.2 ± 0.8
Ti 100.4 ± 1.4 125.6 ± 1.5
V 45.7 ± 0.9 54.7 ± 0.9
Cr 98.8 ± 1.3 109.7 ± 1.3
Mn 61.4 ± 1.1 71.4 ± 1.1
Fe 653.7 ± 3.5 742.1 ± 3.4
Co 3.7 ± 0.3 4.6 ± 0.3
Ni 27.8 ± 0.7 33.8 ± 0.7

Notes. Values are normalized to Si. Only the statistical uncertainties are given.
The absolute intensity for silicon at 160 MeV nucleon−1 is (107.4 ± 3.3) ×
10−9 (cm2 s sr MeV nucleon−1)−1 for solar minimum and (29.1 ± 0.9) × 10−9

(cm2 s sr MeV nucleon−1)−1 for solar maximum.

Figure 7. Comparison of GCR solar minimum abundances (filled circles)
with solar system abundances (open circles). The CRIS solar minimum results
reported in this paper (Table 1) are used for the Z ! 5 GCR abundances. For
Z < 5, the GCR data come from Wang et al. (2002) and de Nolfo et al. (2006).
The solar system abundances are taken from Lodders (2003).
(A color version of this figure is available in the online journal.)

the interstellar fragmentation of heavier elements into secondary
cosmic rays, which fills in the abundances of the rarer elements.

6. DISCUSSION

6.1. Solar Minimum Primary-element Spectra

Figure 8 shows selected CRIS primary-element spectra during
the 1997–1998 solar minimum period. Spectra from various
experiments during the 1976–1978 minimum are plotted for

Figure 1.4: Relative abundances of cosmic rays as measured by the CRIS instrument. The relative
abundance of cosmic rays matches the chemical composition of the solar system, with a few excep-
tions. The mismatch between elements with Z = 3-5, 9, and 21-25 arises from spallation processes
in which cosmic-ray nuclei fragment as they propagate through the interstellar medium. Figure
from [22].

Cosmic-ray composition from ∼1 GeV to ∼100 TeV has been measured with great precision

by several satellite (e.g. AMS) and balloon-based detectors (e.g. CREAM). A summary of these

measurements is shown in Figure 1.5. The spectrum is proton-dominated until roughly 10 TeV [23],

at which point helium becomes dominant. These direct detection experiments have been incredibly

successful, however they are limited in the energy ranges they can investigate.

Due to the steeply falling nature of the cosmic-ray spectrum, only ∼1 particle per m2 per year
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30. Cosmic rays 3

Figure 30.1: Fluxes of nuclei of the primary cosmic radiation in particles per
energy-per-nucleus are plotted vs energy-per-nucleus using data from Refs. [2–13].
The inset shows the H/He ratio at constant rigidity [2,4].

array [18] have observed anisotropy at the level of about 10−3 for cosmic rays with
energy of a few TeV, possibly due to the distribution of sources and the direction of local
Galactic magnetic fields.

The spectrum of electrons and positrons incident at the top of the atmosphere is
generally expected to steepen by one power of E at an energy of ∼5 GeV because of

December 1, 2017 09:36

Figure 1.5: Summary of direct detection energy spectra measurements for various cosmic ray
primary nuclei. For ease of visual comparison, the magnitude of each spectrum is scaled by the
indicated factor. The inset shows the H/He ratio at constant rigidity. Figure from [12].
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is expected to be detected at energies near the knee. Such a small event rate makes it unfeasible

for satellite and balloon-based detectors to probe the energy regime above the knee. For detection

of high-energy cosmic rays, large ground-based detectors are needed in order to have a statistically

meaningful event rate.

However, cosmic-ray composition measurements with ground-based detectors are inherently dif-

ficult as these detectors do not directly measure cosmic ray particles, but instead measure secondary

particles produced from cosmic rays interacting with air nuclei in Earth’s atmosphere (air showers

are discussed in more detail in Section 1.5). Due to the indirect nature of these experiments, large

fluctuations from shower to shower tend to smear out the observable differences between cosmic

ray particles of different masses. This leads to a degradation in the composition resolution of

ground-based experiments. Only the average mass, or at most a few mass groups, can be measured

with any confidence, as compared to the energy spectrum measurements for individual cosmic-ray

species made by direct detection experiments.

Results from ground-based detectors that are sensitive to the mean logarithmic mass 〈lnA〉 of

cosmic rays are shown in Figure 1.6. These measurements show a gradual increase of the average

logarithmic mass of cosmic rays between 1015 − 1017 eV, followed by a transition to a lighter

composition. At high energies near the ankle (Eankle ∼ 3 × 1018 eV), the observed composition

is consistent with a primarily hydrogen flux. This decrease in the average cosmic-ray mass may

be indicative of the emergence of extragalactic sources of cosmic rays. Above energies of 1019 eV

results become inconclusive, with the Telescope Array Surface Detector (TA) observing a proton

dominated flux [24], while the Pierre Auger Observatory reports a spectrum consistent with iron

[25].

Recent analyses from ground-based experiments have made possible the measurement of energy

spectra for distinct mass groups. Observations from KASCADE [26] and KASCADE-Grande [9]

[27] indicate a mass-dependent cutoff sequence at energies at and above the knee. In particular, the

KASCADE-Grande group found evidence just below 1017 eV of a knee-like structure for heavier

cosmic rays, shown in Figure 1.7, opening the possibility of a transition to different sources near

this energy.
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Figure 13: Average logarithmic mass of cosmic ray as a function of energy derived from Xmax measurements with optical detectors for di↵erent hadronic interaction
models. Lines are estimates on the experimental systematics, i.e. upper and lower boundaries of the data presented.

that used this superseded model. Obviously, the systematic dif-
ferences in hXmaxi discussed in the last section propagate di-
rectly to hln Ai. To guide the eye and to be able to compare
the results from optical detectors with those of particle detec-
tors (see below), the upper and lower hln Ai ranges are sketched
in Fig. 13 by solid lines. As can be seen, the experimen-
tal systematics in hXmaxi translates to an uncertainty of about
�(hln Ai) ⇡ ±0.5. The composition trends that were already
visible in Fig. 8 can again be observed in hln Ai: All model
interpretations suggest a gradual increase of the average loga-
rithmic mass of cosmic rays between 1015 eV and 1017 eV fol-
lowed by a transition towards a lighter composition during the
next decade. The heaviest composition with hln Ai ⇡ 3.5 fol-
lows from the Tunka data interpreted with QGSJetII at around
1017 eV. The hln Ai values of HiRes and TA are compatible with
a pure proton composition when using one of the two QGSJet-
flavors. A trend towards a heavier composition would follow
from Auger data for all models and also for HiRes and TA if
interpreted using Sibyll or Epos. It is interesting to note that
the next version of QGSJetII [158] for which some model pa-
rameters were re-tuned to new data from the LHC will have a
similar hXmaxi as Sibyll and thus the combination of any of the

hXmaxi data with one of the contemporary versions of the three
available interaction models will result in a hln Ai significantly
di↵erent from zero at ultra-high energies.

Particle detectors usually do not publish air shower observ-
ables but directly the interpretation in terms of elementary frac-
tions, and in that case only the di↵erences between models with
which the data were analyzed can be used for a limited estimate
of the theoretical uncertainties. Results that were obtained with
out-dated interaction models like e.g. the AGASA measure-
ments [159] will be ignored in the following. Since usually only
fractions of elemental groups are quoted it is not obvious which
value of ln Ai to assign in Eq. (29). To translate the data from
Tibet AS� [89] into hln Ai, we assume equal fluxes of protons
and helium and assign to ‘heavy’ fragments A = 32. However,
we note that the chosen procedure of comparing fluxes from
di↵erent measurement campaigns with di↵erent event selection
and energy calibration may introduce additional systematic un-
certainties particularly in view of the steep power-law spectra
involved, which we can not account for here. For KASCADE-
Grande [92], where the intermediate mass group is composed
of He, C, and Si, we again assume equal fluxes and take the
logarithmic mean of A ' 12. For data that were analyzed in

15

Figure 1.6: Average cosmic ray primary mass 〈lnA〉 as a function of energy as measured by several
experiments. Error bands are the upper and lower boundaries of the data presented and serve as
estimates on the experimental systematic uncertainty. Figure from [25].

While these mass group spectrum measurements are an achievement in their own right, there

are large systematic uncertainties originating from both the manifestly indirect detection using

air showers, as well as our limited understanding of the interactions which occur in air shower

generation. This is one of the motivating factors for performing the composition analysis which is

presented in this thesis.
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FIG. 3: Evolution of the k parameter as a function of the re-
constructed energy for experimental data compared with sim-
ulations of primary masses for the angular range 0-24◦. The
error bars assign statistical as well as reconstruction uncer-
tainties of k. The line displays the chosen energy dependent
k-values for separating the mass groups, where the dashed
lines assign the uncertainty of the selection.

component already becomes reduced. Thus, electron-rich
EAS are generated preferentially by light primary nuclei
and electron-poor EAS by heavy nuclei, respectively.

However, a straightforward analysis is hampered by
the shower-to-shower fluctuations, i.e. by the dispersion
of the muon and electromagnetic particle numbers for a
fixed primary mass and energy. In addition, cosmic rays
impinging on the atmosphere under different zenith an-
gles show a varying, complicated behavior due to the non-
uniform mass and density distribution of the air. There-
fore, the absolute energy and mass scale have to be in-
ferred from comparisons of the measurements with Monte
Carlo simulations. This creates additional uncertainties,
since the physics of the relevant particle interactions is
not completely tested by man-made accelerator experi-
ments. The uncertainties imposed by the hadronic inter-
action models are more relevant for composition analy-
ses than for energy measurements. Hence, our strategy
is to separate the measured EAS in electron-poor and
electron-rich events as representatives of the heavy and
light primary mass groups, similar to the analysis pre-
sented in Ref. [1]. The shape and structures of the re-
sulting energy spectra of these individual mass groups
are much less affected by the differences of the various
hadronic interaction models than the relative abundance.

As a consequence of the considerations above, the en-
ergy and mass assignment of individual events is achieved
by using both observables Nch and Nµ, as well as their
correlation. The following equation is motivated by dis-
cussions of hadronic air showers in reference [7], with
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1020
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FIG. 4: Reconstructed energy spectrum of the electron-poor
and electron-rich components together with the all-particle
spectrum for the angular range 0-40◦. The error bars show
the statistical uncertainties; the bands assign systematic un-
certainties due to the selection of the subsamples. Fits on the
spectra and resulting slopes are also indicated.

the basic idea that the total number of secondary par-
ticles at observation level is related to the primary en-
ergy while the energy sharing between the electromagne-
tic and the hadronic (i.e. muonic) shower components is
related to the primary mass. Therefore, the primary en-
ergy log10(E) is assumed to be proportional to the shower
size log10(Nch) with a correction factor that accounts for
the mass dependence by making use of the measured ra-
tios of shower sizes log10(Nch/Nµ):

log10(E/GeV ) = [aH + (aFe − aH) · k] · log10(Nch)

+ bH + (bFe − bH) · k (1)

k =
log10(Nch/Nµ) − log10(Nch/Nµ)H

log10(Nch/Nµ)Fe − log10(Nch/Nµ)H
(2)

with log10(Nch/Nµ)H,Fe = cH,Fe · log10(Nch) + dH,Fe.
The parameter k takes into account both the average dif-
ferences in the Nch/Nµ ratio among different primaries
with same Nch as well as the shower to shower fluctu-
ations for events of the same primary mass. The exact
form of the equation is optimized for the experimental sit-
uation of KASCADE-Grande and the free parameters [8]
are determined by Monte Carlo simulations [16]. They
are defined independently for 5 different zenith angle in-
tervals of equal exposure (the upper limits of θ are 16.7◦,
24.0◦, 29.9◦, 35.1◦, and 40.0◦) to take into account the
shower attenuation. Data are combined only at the very
last stage to reconstruct the final energy spectrum. The
Nch-Nµ-correlation of individual events is incorporated
in calculating k, which serves now as mass sensitive ob-
servable. Fig. 3 shows the evolution of k as a function

Figure 1.7: Energy spectrum for electron-poor (heavy) and electron-rich (light) components from
KASCADE-Grande. Fits for spectral indices are also indicated. The error bars show statistical
uncertainties, while systematic uncertainties are represented by bands. Figure from [9].
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1.4 Spectrum Anisotropy

In addition to measuring the energy spectrum and relative abundances of cosmic rays, scientists

have begun to explore how the energy spectrum varies as a function of arrival direction. Using

seven years of detector data, the Telescope Array recently reported an observed hotspot in which the

energy spectrum deviated from the rest of the sky with a post-trial statistical significance of 3.74σ

[28]. This was determined by comparing energy distributions for events that lie inside spherical

caps to those outside, across different points in their field of view. The observed spectrum deviation

pre-trial significance is shown in Figure 1.8.

6 ABBASI ET AL.

Figure 3. Projection of the local pre-trial energy spectrum anisotropy significance, for 14.03% equal exposure spherical cap bins (E�1019.2 eV).
The maximum is 6.17�local at 9h16m, 45� and is 7� from the the Hotspot location of Abbasi et al. (2014a). The dashed curve at Dec. = -16�

defines the FOV. Solid curves indicate the galactic plane (GP) and supergalactic plane (SGP). White and grey hexagrams indicate the Galactic
center (GC) and anti-galactic center (Anti-GC).

(a) (b)

Figure 4. The maximum significance energy histograms of events inside the spherical cap bin of radius 28.43� (red) compared to the expected
energies (blue) at 9h16m, 45�. (a) Before rebinning for events with energies E>1019.0 eV. (b) After rebinning for energies E>1019.2 eV (the
maximum significance threshold). There are 147 events with an expectation of Nbg=166.2. Only three out of 11 bins for E<1019.75 eV are
above expectation.

Figure 1.8: Energy spectrum deviation pre-trial significance from the Telescope Array. The max-
imum is 6.17σ and occurs at 9h16m, 45◦ in equatorial coordinates and is 7◦ from the the arrival
direction hotspot presented in [29]. The dashed curve at a declination of -16◦ defines the available
field of view. Solid curves indicate the Galactic plane and supergalactic plane. Figure from [28].

The spherical cap with the largest energy spectrum deviation, shown in Figure 1.9, was in-

terpreted as having a deficit of events with energies 1019.2 ≤ E/eV < 1019.75 and an excess for

E ≥ 1019.75 eV. In addition, the quoted hotspot is only 7◦ from the the arrival direction hotspot

location presented in [29]. The TA group claims this feature is suggestive of an energy-dependent

magnetic deflection of ultra high-energy cosmic rays.

This work by the TA collaboration serves as motivation for the complementary analysis pre-

sented in this work. Here, we use a similar method, described in detail in Section 7.2, to study how
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Figure 3. Projection of the local pre-trial energy spectrum anisotropy significance, for 14.03% equal exposure spherical cap bins (E�1019.2 eV).
The maximum is 6.17�local at 9h16m, 45� and is 7� from the the Hotspot location of Abbasi et al. (2014a). The dashed curve at Dec. = -16�

defines the FOV. Solid curves indicate the galactic plane (GP) and supergalactic plane (SGP). White and grey hexagrams indicate the Galactic
center (GC) and anti-galactic center (Anti-GC).

(a) (b)

Figure 4. The maximum significance energy histograms of events inside the spherical cap bin of radius 28.43� (red) compared to the expected
energies (blue) at 9h16m, 45�. (a) Before rebinning for events with energies E>1019.0 eV. (b) After rebinning for energies E>1019.2 eV (the
maximum significance threshold). There are 147 events with an expectation of Nbg=166.2. Only three out of 11 bins for E<1019.75 eV are
above expectation.

Figure 1.9: Most significant energy spectrum deviation from the Telescope Array. The energy
distribution for events that are within the “on” region is shown in red, while the blue markers
indicate the “off” region energy distribution. The mean and root mean square (RMS) for the on
and off region energy histograms are also indicated. Figure from [28].

the cosmic-ray energy spectrum varies with arrival direction at and above the all-particle knee.

In addition, composition information is used to determine if spectral variations differ for separate

mass groups. One major benefit of this technique, since it is concerned with measuring only relative

differences between spectra, is that it is largely insulated against systematic errors, most of which

influence spectra in both regions considered in the same manner.
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1.5 Extensive Air Showers

Cosmic rays that enter Earth’s atmosphere interact with air nuclei and produce a cascade of

secondary particles through sequences of interactions [30]. This interaction can be represented as:

cr +A→ cr +X + π±,0 + secondaries (1.6)

where cr is an incident cosmic ray, A is an atmospheric nucleus, X is the fragmented nucleus, and

π±,0 are charged and neutral pions. While other secondary particles such as K±,0 and hyperons are

also produced, the production cross section for these particles is an order of magnitude smaller than

that of pions. Thus, air shower characteristics are largely dominated by pions and other secondaries

can generally be ignored [31]. Depending on the energy and type of the particles generated in air

shower interaction, they will either interact again or decay.

At each hadronic interaction, the resulting neutral pions receive, on average, roughly one-third

of the incident energy [32]. These neutral pions then immediately decay to photons:

π0 → γ + γ

and the resultant photons subsequently produce electron-positron pairs γ → e+ + e−. The e±

pairs can produce additional photons via bremsstrahlung or positron annihilation with atmospheric

electrons. The photon, electron, and positron secondaries produced in air shower interactions are

often called the electromagnetic (EM) component of the air shower.

The remaining two-thirds of energy goes into charged pions. Depending on the energy of these

charged pions, they will either initiate a subsequent hadronic interaction which produces more

pions, or decay leptonically to µ±, e±, and neutrinos.

π+ → µ+ + νµ

→ e+ + νe

π− → µ− + ν̄µ

→ e− + ν̄e

The muons resulting from charged pion decay comprise what’s called the hard, or penetrating,

component of air showers. The origin of this term is discussed in the next section. Detection of
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these secondary particles that constitute an extensive air shower requires a detailed knowledge of

how energetic particles lose energy as they travel through matter.

1.1 Hadron Initiated Air Showers 5

Fig. 1.1 Simplified schematic plot of the longitudinal and lateral development of an extensive air
shower in the atmosphere, showing the commonly detectable components. On average a verti-
cally incident high energy proton is subject to about 12 interactions before reaching ground level
(neutrinos are not shown)

Figure 1.10: Simplified schematic illustrating the development of an air shower induced by a proton
cosmic ray primary interacting with the Earth’s upper atmosphere. Note that neutrinos are not
shown. Figure from [30].
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1.5.1 Energy Losses in Matter

Both electrons and muons lose energy as they propagate through matter. There are several pro-

cesses by which energy is lost: ionization of the surrounding medium, e+e− pair production,

bremsstrahlung, and photonuclear interactions. The intrinsic properties of a particle (e.g. mass),

as well as the energy of the particle, determine the relative magnitudes for each of these processes.

Typically ionization losses are dominant below some characteristic energy scale, while stochas-

tic losses from e+e− pair production, bremsstrahlung, and photonuclear interactions dominate at

higher energies [33].

Electrons above 1 GeV lose energy propagating through matter primarily from bremsstrahlung.

The power radiated by bremsstrahlung emission is inversely proportional to mass squared, so

electrons lose energy at a rapid rate and the range they can traverse through matter is limited to

a few meters of water equivalent (mwe). Thus they are only detected at or above ground level.

Muons, being ∼200 times more massive than electrons, can penetrate much further through

matter. For muons below approximately 1 TeV, energy losses due to ionizing the surrounding

material are the dominant source of energy loss. However, above these energies stochastic losses

become the dominant source of energy loss. Figure 1.11 shows the contribution from each of these

processes as a function of energy for muons passing through ice.

The average muon energy loss in matter is typically parameterized via [33]:

− dE
dX
≈ a(E) + b(E)E (1.7)

where −dE/dX is the energy loss per unit path length traveled though a material, and a(E)

and b(E) are approximately constant terms accounting for the muon continuous ionization energy

losses and stochastic losses, respectively. For ice at the South Pole a = 0.26 GeV mwe−1 and

b = 3.60 × 10−4 mwe−1 [35]. Using Equation 1.7, we can determine the average range in ice for a

muon with starting energy, E0, to be [33]:

x0 ≈
1

b

[
1 +

b

a
E0

]
(1.8)

As an example, a 1 TeV muon will, on average, travel a distance of 2.4 km in ice.
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the question arises whether this precision is sufficient to propagate muons with hun-
dreds of interactions along their way. Figure 6 is one of the examples that demon-
strate that it is sufficient: the final energy distribution did not change after enabling
parametrizations. Moreover, different orders of the interpolation algorithm (g, cor-
responding to the number of the grid points over which interpolation is done) were
tested (Figure 9) and results of propagation with different g compared with each
other (Figure 10). The default value of g was chosen to be 5, but can be changed to
other acceptable values 3 ≤g≤ 6 at the run time.
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Figure 1.11: Muon energy losses due to ionization, e+e− pair production, bremsstrahlung, and
photonuclear interactions in ice. Below ∼1 TeV continuous losses to ionization are dominant,
however at higher energies stochastic losses begin to take over. Figure from [34].
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1.5.2 Experimental Technique

Due to the indirect nature of air shower detection, no single observable can be used to determine

both cosmic ray primary particle energy and mass. Instead, multiple parameters are used in

conjunction to extract energy and mass estimates. In the case of this work, measuring the number

of muons and number of electrons produced in an air shower allows for both primary energy

estimation along with composition sensitivity.

Using the Heitler model [32], depicted in Figure 1.12, the number of electrons in an air shower at

shower maximumNA
e,max initiated by a cosmic ray with nuclear mass numberA can be approximated

as:

NA
e,max ≈ Np

e,max ∝ E (1.9)

where Np
e,max is the number of electrons in a proton-initiated shower and E is the primary particle

energy. So the number of electrons at shower maximum yields an estimate for the primary particle

energy, independent of the the composition. Whereas the number of muons in an air shower

initiated by a cosmic ray with nuclear mass number A is roughly:

NA
µ ≈ Np

µA
1−β (1.10)

where Np
µ is the number of muons in a proton-initiated air shower and β is, from air shower

simulations, predicted to be between 0.88 to 0.92 [32]. It’s important to note that the number

of muons increases with both energy E and mass number A. This can be understood using the

superposition principle in which a cosmic ray with total energy E and mass number A can be

approximated as A independent nucleons, each with an energy of E/A. These A nucleons will

undergo the same interaction in Equation 1.6, but the resultant pions will have, on average, lower

energies. Due to a smaller Lorentz boost factor, these lower energy pions have a higher leptonic

decay probability which results in a larger number of muons for air showers induced by heavier

cosmic rays. The number of muons and electrons observed at ground level for simulated proton

and iron air showers at various energies is shown in Figure 1.13.

Note in Figure 1.13 the relative rotation between the iron and proton shower contours as the

primary particle energy increases. This non-linearity originates from the rate of increase in number
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FIG. 4. Hadronic Heitler-Matthews model: pion cascade in
air.

characteristic energy where the interaction length be-
comes larger than the decay length of pions in air, and
is thus also depending on the atmospheric density pro-
file. For example high up in the atmosphere at a depth
of ∼ 100 g/cm2 this energy is around Edec ∼ 55 GeV
and decreases to Edec ∼ 18 GeV at sea level. In realistic
air shower scenarios the energy Eπ

n = Edec is typically
reached within the range of 20 − 30 GeV [22, 60, 61],
which is then adopted to be the critical energy of pions
Eπ

c , in analogy to the critical energy of electrons Ee.m.
c .

The number of generations required to reach Eπ
n = Eπ

c is

nc =
ln(E0/Eπ

c )

ln nmult
, (6)

and is for air showers in the range of 4 to 7 [62] . This
yields a muon number from decaying charged pions of

Nµ = N ch
nc

= (r nmult)
nc =

(
E0

Eπ
c

)β

with

β =
ln r nmult

ln nmult
=

ln r

ln nmult
+ 1 , (7)

which depends on the secondary particle multiplicity and
the pion charge ratio of hadronic interactions. Moreover,
the electron number at shower maximum can be esti-
mated from

Nmax, e =
Ee.m.

Ee.m.
c

=
E0

Ee.m.
c

− Nµ
Eπ

c

Ee.m.
c

, (8)

and is thus depending on the hadronic secondary multi-
plicity and pion charge ratio via the muon number. To
relate the electron number at the shower maximum to
the electron number at observation level, Ne, it is nec-
essary to take the strong attenuation of the electromag-
netic shower component after the shower maximum into
account. In the limit where Xobs ≫ Xmax the air shower
size is in very good approximation exponentially atten-
uated with the scale length Λ ∼ 65 g/cm2 [63]. We can
thus use

Ne ∼ Ne, max e−(Xobs−Xmax)/Λ for Xobs ≫ Xmax ,

which leads to

ln Ne ∼ ln Ne, max − (Xobs − Xmax)/Λ . (9)

It is important to note that ln Ne depends only logarith-
mically on Ne,max but linearly from Xmax. It is shown in
Section V that indeed the impact of the depth of Xmax on
the electron number at ground level is dominating over
a change following from Eq. (8). It is thus the strong
longitudinal shower evolution that is responsible for the
inability of the Heitler model to directly infer any depen-
dence of Ne on hadronic interaction characteristics.

Within the hadronic Heitler framework it is not pos-
sible to follow the parallel development of the hadronic
and electromagnetic cascades. To estimate the position
of the shower maximum one is forced to consider the elec-
tromagnetic contribution from the first hadronic interac-
tion only, which consists of 2 c nmult e.m. subshowers each
of the energy E0/nmult. The shower maximum is then

Xmax ∼ λI + λe ln
E0

nmult Ee.m.
c

, (10)

which is proportional to the hadronic interaction length
and depends logarithmically on the multiplicity, but not
on the charge ratio. This expression does not include
the contribution to the electromagnetic cascade from the
subsequent hadronic cascading process. However, the in-
clusion of higher hadronic generations does not change
the structure of Eq. (10), only the coefficients change
(e.g. [64]).

C. Inelasticity in the Heitler Model

In the Heitler model only equal energy particles of one
type are considered. This also excludes any account of
leading particle effects or other secondary particle dis-
tribution effects. To some limited extend it was accom-
plished to incorporate the inelasticity of interactions in a
Heitler-type cascade by Matthews [22]. The inelasticity

κinel = 1 − Eleading/E0 = 1 − κel (11)

is the fraction of the primary energy that is not car-
ried away by the most energetic secondary particle, often
referred to as leading particle. This energy fraction is
available for the production of new secondary particles,
mainly pions and kaons. The elasticity κel = 1 − κinel is
the fraction of the primary energy that is carried by the
leading particle.

The main difference compared to the standard Heitler
model is that after each interaction secondaries with two
energy levels are generated: nmult particles with energy
of κinel E0/nmult (of which c nmult are neutral pions) and
one particle with energy of κel E0. So with an increas-
ing number of hadronic generations the particles are dis-
tributed in more an more distinct energy levels. It turns
out that in the generation n there are in fact n + 1 dis-
tinct groups of particles of identical energy. This situa-
tion is too complex to be handled in a compact analytic

Figure 1.12: Heitler model in which air shower development is modeled as a sequential branching
process. Each line segment indicates a particle, with solid lines representing charged pions and
dashed lines denoting neutral pions. Note that not all pion lines are shown after the n = 2 level.
Figure adapted from [32].

of electrons being larger for iron showers as compared to proton initiated air showers. At higher

energies, proton initiated showers have not yet reached their shower maximum, which reduces the

rate of increase of the number of electrons in the shower compared to iron induced showers that

have already passed their shower maximum [25].

In this work, we use the IceCube Observatory, discussed in Chapter 2, to measure both the

electromagnetic and muonic components of air showers. This simultaneous estimation of both the

number of electrons and number of muons provides energy and composition sensitivity.
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Figure 3: Air shower simulation of the number of muons vs. electrons at ground level for a vertical shower observed at 800 g/cm2. Contour lines illustrate the
regions which include 90 % of the showers and the inset shows a detailed view at 1020 eV.

for A 2 [1, 56]. To illustrate the discriminative power of the
�(Xmax)-hXmaxi combination, three models for energy evolu-
tion of the extragalactic cosmic ray composition [8, 11, 23] are
shown as well.

2.2. Particles at Ground
Another way of detecting cosmic rays and to estimate their

mass is given by the measurement of particle densities of air
showers at ground. In the calorimeter analogy of the previ-
ous section, this would correspond to a calorimeter with only
one active readout plane and correspondingly this measurement
technique is more susceptible to shower-to-shower fluctuations.
Nevertheless, ground measurements are still frequently used in
cosmic ray detectors because of their geometric acceptance and
high duty cycle.

An estimate of the qualitative dependencies of the number
of muons and electrons on primary mass and characteristics of
hadronic interactions can again be obtained within the Heitler
model. Given the average multiplicity N of each interaction,
the energy of charged and neutral pions in a shower initiated by
a primary proton of energy E is E⇡ = E/Nn after the nth in-
teraction if one (somewhat unrealistically) assumes an energy
independent multiplicity. This energy splitting continues un-
til the charged pion energy reaches the decay energy at which
the hadronic interaction length �int becomes equal to the decay
length �dec = ⇢ � c⌧, where ⇢ is the height-dependent density of
air, � denotes the Lorentz-boost and ⌧ is the pion lifetime. For a
shower with incident angle ✓ in an isothermal atmosphere with
scale height h0, the density at slant depth X is

⇢(h) =
X
h0

cos ✓ =
n�int

h0
cos ✓. (15)

Therefore, the condition �int = �dec leads to a decay energy that
is independent of the interaction length. It is reached after nd

interactions for which

nd N�nd =
h0

c⌧
m⇡ c2

E
1

cos ✓
(16)

and therefore

nd = �
W�1

⇣
� h0

c⌧
m⇡ c2

E
ln N
cos ✓

⌘

ln N
, (17)

where W�1 denotes the lower branch of the Lambert-W function
(see e.g. [53]). The decay energy is then given by

"⇡d =
E

Nnd
(18)

for which we find numerical values of a few tens of GeV and a
slow decrease with primary energy in agreement with the esti-
mates of [43]. The total number of muons produced in a shower
is equal to the number of pions with E⇡ = "⇡d and therefore

N p
µ ⇡

 
E
"⇡d

!�
(19)

with

� =
ln 2

3 N

ln N
, (20)

where the factor 2
3 gives the approximate fraction of charged

pion secondaries. Air shower simulations predict � to be in the
range of 0.88 to 0.92 [42], corresponding to e↵ective multiplic-
ities from 30 to 200 in Eq. (20). It is interesting to note, that
because the interaction length drops out in the calculation of nd

(cf. Eq. (16)), the number of muons at ground are expected to
be independent of �int.

The number of electrons at shower maximum, i.e. at the point
at which the electron energies become too low to produce new

5

Figure 1.13: Number of muons and electrons for simulated proton and iron air showers at various
energies. The particles are observed at ground level for a vertical shower at 800 g/cm2 (note that
IceTop is at 692 g/cm2 [36]). Each contour indicates the 90% containment of air shower events,
while the various line styles show differences in the hadronic interaction model used for producing
the simulated showers. Inset shows a detailed view at 1020 eV. Figure from [25].
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1.5.3 Air Shower Simulation

Paramount for the science mission of any air shower experiment is the ability to develop a mapping

between the observed detector’s signals and quantities of interest related to primary cosmic ray

particles (e.g. direction, location, energy, etc). In order to develop such mappings, Monte Carlo

(MC) simulation is used to model both extensive air shower development and the corresponding

detector response. Air shower simulation is generated using the CORSIKA [37] software, which

is the standard simulation package used throughout the cosmic-ray community. CORSIKA tracks

the development of air shower particles that are induced from atomic nuclei primary particles

interacting with Earth’s atmosphere. For a given incident primary particle, the particle is traced

until it interacts with an air nuclei as determined by the nucleus-air cross-section. Then, all

subsequent interactions of secondary particles are modeled according to the decay and air nuclei

interaction probabilities for the resultant particles. The output from CORSIKA is a set of particle

type, location, direction, energy, and arrival time relative to the primary particle first interaction

for all the secondary particles at a specified observation altitude.

CORSIKA allows users to choose between several different hadronic interaction models when

simulating air showers. For low energy hadronic interactions below 80 GeV we use the FLUKA

interaction model [38], while above 80 GeV Sibyll 2.1 [39] was chosen as the nominal hadronic inter-

action model used to generate air shower simulation. Effects related to choosing other interaction

models, including Sibyll 2.3 [39], QGSJet-II-04 [40], and EPOS-LHC [41], are discussed in Section

6.3.3.

Air showers initiated by proton (p), helium (He), oxygen (O), and iron (Fe) primaries were

generated according to an E−1 energy spectrum with minimum and maximum primary energies of

Emin = 105.0 GeV and Emax = 108.0 GeV, respectively. The simulated energy spectrum of E−1,

as opposed to a more realistic E−3 spectrum, was chosen in order to generate sufficient numbers

of high-energy air showers in a timely manner given the available computing resources. In total,

the simulated detector response to 200,000 air showers was generated for each of the four primary

particle compositions. The incident zenith angles θ for the generated showers were sampled from a

cos θ distribution between 0◦ < θ < 65◦, while the primary azimuth angles were uniformly sampled
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over the full 2π range. Table 1.1 summarizes the generated air shower simulation used in this work.

Composition
Energy Range
[log10(E/GeV)]

Number of Events

P 5-8 200,000

He 5-8 200,000

O 5-8 200,000

Fe 5-8 200,000

Table 1.1: Summary of simulated air showers. Air showers for proton (P), helium (He), oxygen (O),
and iron (Fe) primaries were generated according to an E−1 energy spectrum between minimum
and maximum primary energies of 105.0 GeV and 108.0 GeV, respectively. The shower zenith angles
θ were sampled from a cos θ distribution between 0◦ < θ < 65◦. The Sibyll 2.1 hadronic interaction
model was used in production of secondary air shower particles.
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Chapter 2

The IceCube Observatory

The IceCube Neutrino Observatory is a neutrino detector located at the Amundsen-Scott South

Pole Station in Antarctica. It’s comprised of two components: an air shower surface array, also

known as IceTop, and an in-ice array of detectors deep in the Antarctic ice. Each of these com-

ponents is designed to detect Cherenkov radiation produced from relativistic particles propagating

through ice. A schematic of the observatory is shown in Figure 2.1. While the primary science mis-

sion for IceCube is to discover and understand the astrophysical origins of high-energy neutrinos,

it is also an excellent detector of PeV scale cosmic rays. This chapter discusses the basic detection

principle used by IceCube as well as the two detector components of the observatory.
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Figure 2.1: The IceCube Neutrino Observatory. The observatory is comprised of an air shower
array at the surface and an in-ice array deep in the Antarctic ice. The Eiffel tower is shown for
scale.

2.1 Cherenkov Radiation

As discussed in Section 1.5, cosmic rays interact with atoms in Earth’s atmosphere, creating air

showers of particles. Those particles are detected via the Cherenkov radiation they produce.

Cherenkov radiation is the electromagnetic radiation produced when relativistic, charged parti-

cles travel through a dielectric medium faster than the local speed of light in that medium [42].

The local speed of light in a material is given by c/n, where c is the speed of light in vacuum and

n is the index of refraction for the medium. As a relativistic particle moves through a medium, the

emitted Cherenkov radiation forms a coherent wavefront of light (depicted in Figure 2.2 ), much

like the wake formed by a duck moving through water in a pond.
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The Cherenkov radiation wavefront, often referred to as the Cherenkov cone, is characterized

by the opening angle:

cos θc =
c

vn
(2.1)

where θc is the opening angle of the Cherenkov cone, v is the speed of the particle, c is the speed

of light in vacuum, and n if the refractive index of the medium. For a highly relativistic particle

(i.e. v ≈ c) moving through ice (n = 1.3) the Cherenkov angle is θc ≈ 39.72◦.

The IceCube Observatory, along with other particle detectors, capitalizes on this light gen-

eration process by instrumenting a transparent medium with light sensors to detect Cherenkov

radiation produced by relativistic air shower particles.
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c

n c

n
v >θ

Figure 2.4: Huygens’ wavefront construction illustrating Cherenkov radiation. The light travels with speed

cn = c
n at an angle ✓ from the particle velocity vector, which traverses the medium at a speed v > cn. The

radiation forms a coherent wavefront in the shape of a cone with apex at the particle location.

c

Figure 2.2: Cherenkov radiation wavefront diagram for a relativistic particle moving at speed
v > c/n. Cherenkov light is emitted at an angle θc (see Equation 2.1) relative to the particle’s
velocity vector. The emitted radiation constructively interferes to form a cone-like wavefront with
the vertex of the cone located at the position of the particle.
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2.2 Detector components

2.2.1 Surface Array (IceTop)

IceTop is an ice Cherenkov air shower array located at the surface of the South Pole which is

sensitive to cosmic ray induced extensive air showers with primary energies from roughly 100 TeV

to 1 EeV. It consists of 81 stations arranged in a grid (shown in Figure 2.3) over a 1 km2 area

with a nominal spacing of 125 m between stations. Each station is comprised of two ice Cherenkov

tanks that are separated by a distance of 10 m.

Table 2: List of the years when a certain configuration of IceCube (IC), IceTop (IT) became operational together with the numbers of the
stations which were added in that year (fourth column). The numbers for IC include also the DeepCore strings. We will use abbreviations like
IC79/IT73 for the constellation in 2010, for example. The fourth and following columns list stations using the numbers given in Fig. 2. The
fifth column lists the tanks which have Tyvek liners (the others are coated with zirconia liner). However only the tanks installed in 2005 have
higher reflectivities than the other tanks. The sixth column reports the DOMs which have the ‘old’ transformers with 43⌦ and a short time
constant, see Sections 3.2, 3.5 and Table 4. The last two digits in this column (62 or 64) are the DOM numbers in a station according to Fig. 6.

Year IC IT new IT stations Tyvek liner old transformer
strings stations (43⌦)

2005 1 4 21 29 30 39 all all
2006 9 16 38 40 47-50 57-59 66 67 74 - all
2007 22 26 46 55 56 64 65 71-73 77 78 - (77,46,56)-62

(77,46,71)-64
2008 40 40 44 45 52-54 60-63 68-70 75 76 - (53,55)-62

(52,55,62,68-70)-64
2009 59 59 2-6 9-13 17-20 26-28 36 37 - 37-64
2010 79 73 8 15 16 23-25 32-35 41-43 51 - 23-62
2011 86 81 1 7 14 22 31 79-81 79A, 80A, 81A/B -
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Figure 2: Locations of IceCube string holes and IceTop tanks with the IceCube Lab (ICL) in the center in the final configuration after 2010.
The holes 81 to 86, belonging to DeepCore and not related to IceTop tanks, are not shown. IceTop stations are located next to IceCube strings
(except for the in-fill station 81) and consist of two tanks, A and B. The irregularity of the array arises because tank locations were constrained
by surface cabling and IceCube drilling operations. A denser in-fill array is formed by the stations 26, 27, 36, 37, 46, 79, 80, 81.

7

Figure 2.3: Diagram showing IceTop tank and in-ice array string locations. The nominal spacing
between in-ice strings is 125 m, while the spacing between IceTop tanks is 10 m. The IceCube Lab
(ICL) location is indicated by the green square. Figure from [36].

A cross section schematic of an IceTop tank is shown in Figure 2.4. Each tank is 1.3 m tall
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Figure 3: Tank dimensions in a cross-sectional view. Wall thicknesses are not to scale (see Table 3).

Table 3: Dimensions of IceTop tanks and assembly. The numbers given in units of m have tolerances of the order of 1 cm.

component quantity value
polyethylene tank height 1.10 m

wooden extension 0.20 m
inner diameter 1.82 m
wall thickness 6 mm
zirconia liner 4 mm

ice height 0.90 m
DOMs distance between centers 0.58 m
perlite thickness 0.40 m
outside tank polystyrene below tank (100 ± 2) mm

polyurethane foam around tank (50 � 100) mm

2.3. Tank design
A schematic cross section of the IceTop detectors is shown in Fig. 3 (dimensions are reported in Table 3). The

tanks are made of black, cross-linked polyethylene, 6 mm thick, 1.1 m high, with a 1.82 m inner diameter and are
filled with ice to a height of 0.90 m. Most of the tanks have an integral di↵usely reflective white liner made by
dispersing zirconium dioxide powder5, referred to as zirconia, into High Density Polyethylene (HDPE) by extru-
sion6. The polyethylene, containing 6% zirconia by volume, is milled to fine white powder7 with average particle
size 45 µm. The tanks are produced by a rotational molding technique8 starting with molding the 6 mm thick,
black outside layer and then covering it using the white powder to form a 4 mm thick layer. A final curing process
leads to cross-linked bonds in the HDPE polymer structure which strengthens the tanks and finally determines the
di↵usive reflectivity of the liner. Eight tanks commissioned in 2005 and four tanks deployed in 2011 have Tyvek9

linings in form of bags loosely covering the tank walls (Table 2).
Figure 4 shows measurements of the di↵use reflectivity of tank liners as a function of the wavelength. The

measurements were done outside of the tanks and usually in dry condition. For Tyvek also a comparison of
reflectivities of dry and wet material from the 2005 tanks is shown in the plot. The di↵erence between dry and

5Supplier: Stanford Materials, Irvine, CA 92618 U.S.A.
6Manufacturer: PlastiScience, LLC, Smyrna, DE 19977
7Manufacturer: Power King, Texas
8Manufacturer: PolyProcessing, Winchester VA
9Dupont brand of a synthetic textile made of high-density polyethylene fibers

8

Figure 2.4: Cross-section of an IceTop tank. Figure from [36].

and filled with 0.9 m of clear ice. Two digital optical modules (DOMs) for detecting Cherenkov

radiation from air shower particles are placed in each tank. The DOMs in each tank are facing

downwards and located along a diameter of the tank symmetrically about its center with a distance

of 58 cm between the two DOM centers. The space between the tank ice and lid (0.4 m) is filled

with perlite for thermal insulation and protection against light exposure. A procedure in which the

water in the surface tanks was made to freeze from the top to the bottom of the tank was used to

ensure clear and crack-free ice [36].

2.2.2 In-Ice Array

The in-ice array consists of 86 cable assemblies (called “strings”) that are drilled deep into the

Antarctic glacial ice. The strings are spaced approximately 125 m apart from one another and are

each instrumented with 60 DOMs between 1450 m to 2450 m beneath the surface. The DOMs,

which are identical to those used in IceTop, are evenly spaced along each string in intervals of 17 m

and each string is located next to a corresponding IceTop station (see Figure 2.3 for the locations of
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the in-ice strings and IceTop stations). Altogether, the in-ice array instruments a cubic kilometer

of Antarctic ice.

The in-ice strings were deployed into boreholes, each approximately 60 cm in diameter to a

depth of 2500 m, that were drilled using a high-pressure hot-water drill [43]. Due to the extreme

weather conditions at the South Pole, drilling was able to be done only during the months of

December and January (the two warmest months in Antarctica). Construction of both the surface

and in-ice arrays began in 2004 and was completed in December 2010.

2.3 Digital Optical Modules
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Figure 3: Components of the DOM, showing mechanical layout (left) and functional connections
(right).

DOMs transmit their data to computers in the ICL over a twisted wire pair that also provides
power (section 4). Wire pairs are bundled to form the vertical in-ice cables and the horizontal
surface cables. Each wire pair is shared between two DOMs, with data transfers initiated by a
surface computer. Separately, dedicated local coincidence (LC) wiring to neighbor DOMs above
and below allows quick recognition of neighboring coincident hits, where nearest or next-to-nearest
neighbors are hit within a common time window. The time window is configurable and is set to
±1 µs for both in-ice and IceTop DOMs. The signals are forwarded from one DOM to the next
through the dedicated wiring. The span of the forwarding is software-configurable and is currently
set to two for in-ice DOMs, i.e. a DOM signals its neighbor and next-to-nearest neighbor DOMs
in both up and down directions along the string. The local coincidence connections for IceTop,
which allow coincidences between the two tanks in a station, are described in ref. [24]. Local
coincidence hits (“HLC” hits) often have complex PMT waveforms indicating multiple photons
detected in each DOM and are therefore saved in full detail; otherwise, the DOM saves abbreviated
information appropriate to single photon detection (section 6.3.4).

The DOM is capable of interpreting commands from the surface that specify tasks for con-
figuration, data-taking and transmission, monitoring or self-calibration. Self-calibration functions
establish PMT and amplifier gains as well as sampling speed (section 3.1). The RAPCal system
(section 3.3) is implemented for tracking each local DOM clock’s o↵set from universal time, al-
lowing PMT pulses that were independently recorded in many DOMs to be built into events by
surface computers.

– 7 –

Figure 2.5: Schematic of a digital optical module. Note that the glass pressure housing unit is not
shown in this diagram. Figure from [44].

The digital optical module, or DOM, is the central light sensor device used throughout IceCube.

DOMs are used to detect Cherenkov radiation given off by relativistic particles interacting with ice.

Each DOM is comprised of a 10 inch diameter Hamamatsu R7081-02 photomultiplier tube (PMT)

[45], power supply, light sources for calibration, and onboard electronics that allow for the capture

and digitization of PMT signals [46]. The PMT and electronics are housed in a glass pressure

sphere with an outer diameter of 13 inches and thickness of 0.5 inch. In order to shield against
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effects due to the Earth’s magnetic field, the PMT is enclosed by a mu-metal wire grid. A DOM

schematic diagram is shown in Figure 2.5.

To fully capture the dynamic range of signals produced by air showers, the two DOMs in each

IceTop tank are operated at different gains. The high gain (HG) DOM operates with a gain of

5× 106 and the low gain (LG) DOM has a gain of 1× 105. The in-ice array DOMs operate with a

gain of 1× 107.

Several operations, including data acquisition, calibration, and communications, are integrated

into a single circuit board (called the “main board”) at the neck of the PMT [46]. PMT signals

are captured and digitized by the DOM electronics when the PMT pulse voltage crosses a specified

threshold. This threshold corresponds to a signal of 23 PE and 270 PE for the HG and LG IceTop

DOMs, respectively, and 0.25 PE for the in-ice array DOMs. PMT signals are digitized using both

an Analog Transient Waveform Digitizer (ATWD) and a 10-bit fast Analog-to-Digital Converter

(fADC). The ATWD is a custom integrated circuit that samples the PMT output signal in 3.33 ns

wide time bins with 128 total bins for a total sampling time of 427 ns. The fADC is a commercial

product used to continuously digitize PMT waveforms at a sampling rate of 40 MHz for a total

of 6.4 µs. The ATWD yields a digitized signal with a small timing resolution over a short time

window, while the fADC provides time coverage for longer signals. Figure 2.6 shows an example

PMT signal that has been digitized by both the ATWD and fADC.

2.4 Calibration

Each DOM in IceTop can have a different response to a given signal due to variations in the ice

properties, tank materials, or snow coverage atop the individual tanks. In order to calibrate for

these various effects, each DOM is calibrated using a single-muon spectrum.

The average muon energy at IceTop is O(2 GeV) and muons at this energy are minimum

ionizing in ice [36]. Thus the energy deposited in an IceTop tank by these muons is proportional

to the traveled path length through the tank. This is evident in the charge spectrum for each

tank. An example charge spectrum is shown in Figure 2.7. The peak at ∼134 PE is produced by

vertical muons passing through the tank, while the background below the vertical muon peak is
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Figure 6: The same signal sampled in the ATWD (top) and the fADC (bottom): the ATWD record-
ing duration is 427 ns whereas the fADC recording duration is 6.4 µs. Energy reconstruction in
IceCube uses the charge and time recorded in the waveform [21].

described in section 2.2.2.
As explained in ref. [27], two sets of ATWD chips are operated alternately in order to reduce

deadtime; the second ATWD is available to launch during the digitization step of the first, after a re-
arm delay of 50 ns. Significant deadtime only occurs after two back-to-back launches and depends
on how many ATWD channels are digitized, and whether the initial hit had an LC condition. Since
the full waveform is not needed in the absence of LC, the digitization can be aborted early, and the
ATWD channels can be cleared and reset. The timing sequence for back-to-back hits is shown in
figure 7.

The total accumulated deadtime for each individual DOM is measured by counting discrim-
inator crossings when both ATWDs and the fADC are not acquiring data. This deadtime varies
seasonally based on the atmospheric muon flux [24]. The median fractional deadtime during a
high-rate period for in-ice DOMs is 6.6 ⇥ 10�5, for IceTop low-gain DOMs is 7.2 ⇥ 10�6, and for
IceTop high-gain DOMs is 3.2 ⇥ 10�3.

2.2.6 Flasher Board

Each DOM contains an LED Flasher Board, which is used to generate light in situ for a variety of
calibration purposes [23, 31], including:

1. Verifying the timing response of the DOMs throughout the analysis software chain.

– 13 –

Figure 2.6: The same PMT signal sampled by the ATWD (top) and fADC (bottom). Figure from
[44].

predominately from the electromagnetic background.

The muon spectrum for each tank is fit using the empirically derived formula [36]:

f(x) = p0

[
L(x; p1, p2) +

1.85

p1

1

exp
(

(x− p1)/(p2)
)

+ 1

]

︸ ︷︷ ︸
fµ

+ p3 exp
(
p2x
)

︸ ︷︷ ︸
fem

(2.2)

where L(x; p1, p2) is a normalized Landau distribution. The fµ term is the contribution to the

charge spectrum due to muons and the fem term accounts for electromagnetic background. The

fitted muon term is then used to calibrate each IceTop DOM to the same input signal (vertical

muons). A vertical equivalent muon (VEM) is defined to be the charge value at 95% of the muon

peak which is the maximum of the muon contribution in the fit in Equation 2.2. A VEM is the

standard unit of deposited signal used in a IceTop tank. The charge value of 95% was chosen in

response to a measurement of tagged vertical muons which resulted in a 5% lower muon peak [36].
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Figure 18: Calibration monitoring plots of the DOMs in tank 61A from April 15, 2012. a) Charge spectrum of the high-gain DOM in Tank 61A.
The black curve corresponds to a fit employing the function (7) with the muon (green) and electromagnetic (red) contributions. The maximum
of the muon contribution is indicated by the green arrow while the black arrow points to the value of 1 VEM at 95% below the maximum.
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high-gain and low-gain DOMs is not fully understood (but accounted for by the VEM calibration), see discussion
in the next Section 5.2.5.

The energy of air showers can only be determined by comparison with simulations. It is therefore essential
that the simulation uses the same definition of VEM to quantify the tank response to air showers. Here the merit
of the VEM calibration becomes particularly obvious: the details of each tank do not have to be simulated, but one
typical tank behavior can be used in the simulation, and the simulation can be approximately applied to all tanks
when signals are expressed in units VEM. The ‘calibration’ of the simulated signals in units of VEM is described
in Section 9.3.

5.2.5. Low gain cross-calibration
Since the muon spectra are only recorded and fitted for the high-gain DOMs the low-gain DOMs are cross-

calibrated assuming that the two DOMs of a tank record on average proportional light yields per particle. Therefore
the signal ratio of the two DOMs should be constant in an overlap region where saturation does not play a role.

26

Figure 2.7: Charge spectrum for an IceTop DOM during calibration monitoring on April 15, 2012.
The black curve is the fitted function from Equation 2.2. The green and red curves are the fitted
muon peak and electromagnetic background components, respectively. For this particular DOM, a
VEM is equivalent to a deposited charge of 134.1 PE. Figure from [36].
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Chapter 3

Air Shower Reconstruction

Given the charge, timing, and position information from an air shower detected by the surface and

in-ice arrays, we are left with the task of using this information to infer, or reconstruct, parameters

associated with the primary cosmic ray particle that induced the air shower. This chapter discusses

the reconstruction techniques used to engineer the high-level features used in this work. Specifically,

the reconstructed parameters which will be used in later steps of this analysis are the air shower

energy proxy, which correlates with the number of air shower electrons, and direction, as determined

using IceTop, and the composition-sensitive muon number proxy, as determined using the in-ice

array.
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3.1 General Reconstruction Principles

In Chapter 2, we discussed the low-level DOM signals in the surface and in-ice arrays. Using the

timing distribution of these signals, we can group signals across the arrays into different events.

Each event of interest in this analysis represents the detected signals associated with a single air

shower passing through IceCube. An example event is shown in Figure 3.1. This chapter will

review the event reconstruction methods used for this analysis. In particular, it is important to

understand the main goals of our reconstructions:

1. With IceTop: the best possible measure of the air shower core position, direction, and an

energy proxy parameter

2. With the in-ice array: a muon number proxy

The reconstructed core position and direction will be crucial for the data quality cuts discussed in

Section 3.4, while the energy and muon number proxies will be used to determine primary particle

composition.

The reconstruction techniques used for both the surface and in-ice arrays are maximum likeli-

hood methods. These reconstructions are described by a likelihood function, L(x|θ), that contains

information about the observed detector signals for an event, x, and is parameterized by a set of

free parameters θ = {θj |j = 1, ...,m} that we wish to know. In our case, the free parameters are

related to characteristics of detected air shower, e.g. air shower direction, core position, etc. The

method of maximum likelihood estimation states that the estimated values for the θ parameters

are those that maximize the likelihood function. Intuitively, this is choosing the values for the

likelihood parameters that maximize the probability of measuring the observed detector signals.

Maximum likelihood-based algorithms perform better when the seed, or starting point for the

optimization procedure, used for the reconstruction is close to the true solution. To this end, an

initial, analytical plane wave reconstruction is performed for IceTop signals which then serves as

a good seed for the more advanced IceTop likelihood reconstruction. The result of the IceTop

likelihood reconstruction is then used as a seed for the in-ice likelihood reconstruction.
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2. The IceCube Neutrino Observatory

The IceCube Neutrino Observatory consists of two parts: IceTop, a surface air shower array
[6], and IceCube, a muon and neutrino telescope installed deep in the ice. These detectors are
the successors to the SPASE [7] and AMANDA [8] experiments. Each array is comprised of light
sensors called Digital Optical Modules (DOMs) [9], which detect Cherenkov photons emitted by
relativistic charged particles passing through ice. Each DOM is a spherical, pressure-resistant glass
shell containing a 25 cm diameter Hamamatsu photomultiplier tube (PMT), a mu-metal grid for
magnetic shielding of the PMT, and electronics for operation and control of the PMT as well as
amplification, digitization, filtering, and calibration.
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Figure 1: Left: A schematic of the final IceCube Neutrino Observatory layout, completed in 2011. In 2008, only the
IceTop and IceCube arrays existed, though a low-energy in-fill array called DeepCore has since been added. Right:
A coincident event from the IceTop/IceCube 40-string configuration of 2008. The colors represent the timing of the
hits (red is earliest, blue is latest), and the size of the sphere around a DOM represents the amplitude of light seen
by that DOM. In this large event, a big dust layer can clearly be distinguished as a “waist” in the amplitudes just
over half-way down the IceCube array.

In IceCube, DOMs are frozen into the ice along strings which are placed in a 125 m triangular
grid formation. The DOM’s are vertically spaced 17 m apart, at depths from 1450 m to 2450 m
below the surface, as shown in Fig. 1(a). The direction of muons (either from cosmic ray air showers
above the surface, or neutrino interactions within the ice or bedrock) can be reconstructed from

4

Figure 3.1: Coincident air shower event. IceTop can be seen towards the top of the diagram,
while the in-ice array is shown below. The signal deposited in each DOM is shown by a sphere
surrounding the corresponding DOM. The larger the measured signal, the larger the size of the
sphere. Timing information is encoded in the color of the sphere, with earlier times in red and
later times in blue. The red line indicates the reconstructed air shower track.
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3.2 IceTop Air Shower Reconstruction

An initial quick, analytical reconstruction is performed in which cosmic ray air showers are ap-

proximated as plane waves moving at the speed of light c. The shower core position estimate for

4

1.2 Extensive Air Showers

Primary cosmic ray particles with energies & 100 GeV incident at the top of the Earth’s atmosphere

produce extensive air showers, characterized by a laterally extended but thin disk of secondary particles

(see figure 1.3). The nature of the primary particle determines the evolution of the shower with regard to

the particle content and subsequently the shape and energy distribution as the shower develops through

the atmosphere. This section introduces extensive air showers by first discussing purely electromagnetic

cascades, and then addresses the more complicated processes involved in hadronic initiated particle showers.

θ

θ

c

~5-10 ns

Shower Axis

Incident Primary

Particle

Detector Level

Particle Disk

Figure 1.3: Diagram of an extensive air shower particle front. The particle disk moves forward at nearly

the speed of light, and has a characteristic width and curvature. The shower axis direction is defined by

the zenith angle ✓, which projected onto the ground determines the core location, represented by the thin

four-pointed star. Near the core the shower front is compact, smearing and thinning out laterally. Air shower

reconstruction is done using the relative timing and integrated signals of detector elements on the ground.

The five-pointed star represents the first interaction point of the primary particle.

Figure 3.2: Spherical particle disk of an extensive air shower.

the plane wave reconstruction is given by the centroid of the air shower. This is defined to be the

charge weighted average of the tank positions:

~r0 =

ntanks∑
i

qwi ~ri

ntanks∑
i

qwi

(3.1)

where w = 0.5 is the charge weighting power, qi is the charge measured in the i-th tank, and ~ri is

the position vector for the i-th tank. Note that the weighted average is not taken over all tanks,

but instead restricted only to the ntanks = 7 tanks with the largest measured signal. The values

for the charge weighting power w and ntanks were chosen to optimize the performance of the plane

wave reconstruction [36].
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Using the shower core position and timing information from the tanks, we can determine the

direction of the air shower. Under the shower plane wave approximation, the time of each tank hit

can be written as a function of the tank position relative to the shower core. That is,

tplane
i = t0 +

(~ri − ~r0) · ~n
c

(3.2)

where ~n is a unit vector pointing in the direction of motion of the shower plane wave, ~r0 is the

shower core position, and t0 is the time at which the shower core passes through ground level. The

shower direction is determined by minimizing a χ2 function between the fit and measured times

χ2 =
∑

i

(tplane
i − ti)2

σ2
(3.3)

where σ = 5 ns is the trigger time uncertainty, tplane
i and ti are the plane wave fit and measured

times of the i-th tank hit, respectively. Expanding equation 3.3 in terms of the components of ~n

and ~ri we obtain

χ2 =
1

σ2

∑

i

(
t0 − ti +

1

c

(
nx(ri,x − r0,x) + ny(ri,y − r0,y) + nz(ri,z − r0,z)

))2

(3.4)

Given that ~n is a unit vector, i.e. ~n =
(
nx, ny,−

√
1− n2

x − n2
y

)
, minimizing equation 3.4 requires

solving a system of non-linear equations. To simplify this procedure, we make the assumption that

the z-component of the tank positions is constant and equal to the z-component of the shower core

position, i.e. ri,z = r0,z. This is a reasonable assumption to make, given that the tank altitudes

vary by only 6 meters over the entire ∼1km2 scale IceTop detector [36]. Under this constant tank

altitude assumption, the values of nx and ny which minimize Equation 3.4 can be found analytically

through matrix inversion.

To help mitigate any biases introduced by the constant tank altitude assumption, a second

iteration of the χ2 minimization is performed using times that have been corrected to account for

the tank’s relative height differences. The corrected times used for this second iteration, in place

of the original measured times, are:

tcorr
i = ti +

(zi − z0) cos(θ)

c
(3.5)

where tcorr
i , ti, and zi are the corrected hit time, the measured time, and z-coordinate for the i-th

tank, respectively, and θ is the reconstructed zenith angle from the first iteration. The direction
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found from this second iteration of χ2 minimization is the shower direction returned by the plane

wave reconstruction.

The estimated shower core position and direction from the plane wave reconstruction are used

as a seed for the more advanced IceTop likelihood reconstruction. This likelihood reconstruction,

which includes factors for shower front curvature, takes into account information related to the

deposited tank charge spatial distribution, timing information, and charge thresholds.

3.2.1 Spatial Distribution

The expectation value of the deposited tank charge as a function of distance from the shower core,

called the shower lateral distribution (LD), is characteristic of the shower primary energy, compo-

sition, and state of shower development (often referred to as the shower ”age”). To extract this

information, the lateral distribution is parameterized by the empirically derived lateral distribution

function (LDF)[47]:

SLDF(R) = Sref ·
(

R

Rref

)−β−κ log10(R/Rref)

(3.6)

where SLDF(R) is the expected signal deposited a distance R away from the shower core, Sref

is the charge deposited at a reference distance Rref away, and β and κ are additional slope and

curvature parameters. Previous studies have found that fixing the value of κ has little impact on

the likelihood reconstruction. So while β is a free parameter, κ is set fixed to 0.303 [36]. A reference

distance of Rref = 125 m was chosen in order to minimize the correlation between the Sref and β fit

parameters. The expected signal at this distance is denoted by S125 and is highly correlated with

the primary particle energy. Thus, S125 serves as a good energy proxy and is used so throughout

this analysis. Figure 3.6 shows reconstructed S125 values as a function of primary particle energy.

An example shower lateral distribution and corresponding fitted LDF is shown in Figure 3.3.

The charges measured by IceTop are affected by snow accumulation on top of the tanks. On

average, the snow height on the tanks increases 20 cm every year [36]. This causes a reduction

in the measured signal in the tanks over time as air shower particles lose energy in, or are fully

absorbed by, the snow atop the surface tanks. To correct for this reduction in the measured signal,
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Figure 27: Example of the IceTop air shower reconstruction. a) Lateral fit to signals from 25 triggered stations with a reconstructed shower
size S125 = (65.1 ± 2.8) VEM. b) Time residuals with respect to a plane perpendicular to the shower direction given by Eq. (21). “Upstream”
and “downstream” refer to tanks being hit before and after the shower core reaches the ground.

to correct additionally for the residual droop in the follow-on hit. Droop correction cannot be applied to SLC hits
but is on average accounted for by the SLC calibration (Section 5.4).

The total HLC pulse charge is then extracted by integrating the calibrated waveform and converting it into units
of PE and VEM to be used in reconstruction. The pulse time is defined by the crossing of the leading edge slope
of the first pulse with the baseline. The slope is taken between 10 to 90% of the leading edge (see Fig. 11 a). All
times are expressed in UTC time.

For each tank, charge and time of the pulse in the high-gain DOM are used, unless the charge surpasses a
saturation threshold determined during the VEM calibration (expression (10) in Section 5.2.5). In that case, the
charge is used from the low-gain DOM. The pulse time is always based on the high-gain DOM. If there is no pulse
in a low-gain DOM within ±40 ns of a saturated high-gain pulse, the pulse is marked as saturated to be treated
accordingly by reconstruction algorithms.

In addition, for air shower reconstruction, events are cleaned by requiring the following conditions:

• A station is discarded if the following condition on the signal times in the two tanks A and B is not met:

|tA � tB| < |xA � xB|
c

+ 200 ns, (16)

where tA and tB are the signal times in the two tanks located at xA and xB.

• Stations are grouped in clusters which in principle could belong to the same shower, such that any pair of
stations i and j in the cluster fulfills the condition

|ti � t j| <
|xi � x j|

c
+ 200 ns. (17)

The station position xi is the center of the line connecting its two tanks, and ti is the average time of both
tank signals. In each event, only the largest cluster of stations is kept.

This selection is done in order to remove obviously unrelated pulses from events. In the IT26 analysis [27] it only
a↵ected about 4% of events, where on average 2.3 tanks were removed.

8. Air Shower Reconstruction

Properties of a primary particle are inferred from the air shower parameters reconstructed from the IceTop
signals. The reconstructed parameters include the shower core position and direction, and the shower size. The
latter is a measure of primary energy and is defined as the signal Sref measured at a certain distance Rref from the
shower axis. These properties are reconstructed by fitting the measured charges with a lateral distribution function
and the signal times with a function describing the geometric shape of the shower front (Fig. 27). Currently only
HLC hits are used in the reconstruction.
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Figure 3.3: Fitted lateral distribution for an air shower detected by IceTop. The data points show
the deposited tank charges and tank distance for this event. The black curve indicates the fitted
LDF from Equation 3.6. The fitted LDF parameters for this air shower are S125 = 65.1 VEM and
β = 2.66. Figure from [36].

an exponential absorption model is used to modify the expected charge in each tank [36]. The

corrected tank signals are given by:

Scorr,i = Si · exp

(
dsnow,i sec θ

λeff

)
(3.7)

where Si is the measured charge in the i-th tank, Scorr,i is the corrected charge, dsnow,i is the depth

of the snow above the i-th tank, θ is the shower zenith angle, and λeff is an effective absorption

length in snow. The effective absorption length of λeff = 2.25 m was found to give a consistent

S125 distribution across different portions of IceTop with varying snow coverage, and is used in this

work.

In addition to accounting for tank snow coverage, two additional factors related to the measured

signals in each tank are also considered in the likelihood reconstruction: un-triggered tanks and

saturated tanks. When large amounts of Cherenkov light are produced in IceTop tanks, the tank

PMTs begin to exhibit a non-linear response to input light signal. This effect, known as PMT
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saturation, results in an underestimate of the true signal size. In contrast, for small signals there is

a probability that a tank with a certain expected signal will have a measured signal less than the

tank threshold and not trigger. Thus, the distribution of tanks that do not trigger also contains

meaningful information. In order to account for these effects, tanks which do not trigger, or are

saturated, are accounted for separately in the likelihood reconstruction.

3.2.2 Timing Distribution

In addition to the spatial charge distribution, the tank hit timing distribution is also included in

the likelihood fit. The time of each tank hit can be written as

tfit,i = t0 +
(~ri − ~r0) · ~n

c
+ ∆t

(
R
)

(3.8)

where t0 is the time the shower core reaches the ground, ~r0 is the shower core position at ground

level, ~ri is the position of the i-th tank, and ∆t(R) is an additional term related to the curvature

of the shower front as a function of the distance to the shower axis. For the case of ∆t(R) = 0, we

recover the plane wave approximation in Equation 3.2. The additional curvature term is given by

the empirically derived formula:

∆t(R) = aR2 + b

(
1− exp

(
− R2

2σcurve

))
(3.9)

where a = 4.823 × 10−4 ns/m2, b = 19.41 ns, and σcurve = 83.5 m [36]. Based on experimental

data, fluctuations in the arrival times are given by

σt,i = 2.92 ns + 3.77× 10−4 ns · (Ri/m)2 (3.10)

where Ri is the distance of the i-th tank to the shower axis [48]. An example fitted tank hit time

distribution is shown in Figure 3.4.
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Figure 27: Example of the IceTop air shower reconstruction. a) Lateral fit to signals from 25 triggered stations with a reconstructed shower
size S125 = (65.1 ± 2.8) VEM. b) Time residuals with respect to a plane perpendicular to the shower direction given by Eq. (21). “Upstream”
and “downstream” refer to tanks being hit before and after the shower core reaches the ground.

to correct additionally for the residual droop in the follow-on hit. Droop correction cannot be applied to SLC hits
but is on average accounted for by the SLC calibration (Section 5.4).

The total HLC pulse charge is then extracted by integrating the calibrated waveform and converting it into units
of PE and VEM to be used in reconstruction. The pulse time is defined by the crossing of the leading edge slope
of the first pulse with the baseline. The slope is taken between 10 to 90% of the leading edge (see Fig. 11 a). All
times are expressed in UTC time.

For each tank, charge and time of the pulse in the high-gain DOM are used, unless the charge surpasses a
saturation threshold determined during the VEM calibration (expression (10) in Section 5.2.5). In that case, the
charge is used from the low-gain DOM. The pulse time is always based on the high-gain DOM. If there is no pulse
in a low-gain DOM within ±40 ns of a saturated high-gain pulse, the pulse is marked as saturated to be treated
accordingly by reconstruction algorithms.

In addition, for air shower reconstruction, events are cleaned by requiring the following conditions:

• A station is discarded if the following condition on the signal times in the two tanks A and B is not met:

|tA � tB| < |xA � xB|
c

+ 200 ns, (16)

where tA and tB are the signal times in the two tanks located at xA and xB.

• Stations are grouped in clusters which in principle could belong to the same shower, such that any pair of
stations i and j in the cluster fulfills the condition

|ti � t j| <
|xi � x j|

c
+ 200 ns. (17)

The station position xi is the center of the line connecting its two tanks, and ti is the average time of both
tank signals. In each event, only the largest cluster of stations is kept.

This selection is done in order to remove obviously unrelated pulses from events. In the IT26 analysis [27] it only
a↵ected about 4% of events, where on average 2.3 tanks were removed.

8. Air Shower Reconstruction

Properties of a primary particle are inferred from the air shower parameters reconstructed from the IceTop
signals. The reconstructed parameters include the shower core position and direction, and the shower size. The
latter is a measure of primary energy and is defined as the signal Sref measured at a certain distance Rref from the
shower axis. These properties are reconstructed by fitting the measured charges with a lateral distribution function
and the signal times with a function describing the geometric shape of the shower front (Fig. 27). Currently only
HLC hits are used in the reconstruction.
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Figure 3.4: Fitted tank hit timing distribution for an air shower detected by IceTop. The data
points show the tank hit times as a function of tank distance from the shower core for this event.
The black curve indicates the fitted timing distribution from Equation 3.8. The terms “upstream”
and “downstream” refer to tanks being hit before and after the shower core reaches the ground.
Figure from [36].

3.2.3 Likelihood Fit Procedure

The full air shower reconstruction likelihood, L, is the product of four individual terms:

L(~r0, t0, ~n, S125, β) = Lq × Lt × Lnohit × Lsat (3.11)

where the Lq term relates to the probability for the triggered tanks to measure the observed charge,

Lt accounts for the expected tank hit timing distribution, and Lnohit and Lsat are terms for the

un-trigger and saturated tanks, respectively. For a detailed discussion regarding these individual

likelihood terms, see [36].

The full IceTop likelihood is a function of seven free parameters: the shower core position ~r0 =

(x0, y0), time the shower passes through the shower core position t0, shower direction ~n = (θ, φ),

and LDF parameters S125 and β. In general, high-dimensional likelihood spaces can be complicated

and have multiple local extrema. To help convergence towards global minimum, an iterative fitting

procedure is used. At each step, only a subset of the full parameter space is explored and the fitted
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parameters from the previous step are used as the seed for the following step to ensure the best

possible starting point for the minimizer at a given step. Specifically, the fitting procedure steps

are:

1. The shower core and direction are seeded with the results from the plane wave reconstruction.

S125, β, and the shower core position are fit, while the shower direction is kept fixed. The

shower core position is restricted to a box with 400 m sides about the plane wave core position.

2. Use the fitted parameters from the previous step as a seed. All seven likelihood parameters

are fit. The shower core position is restricted to a box with 30 m sides about the seeded core

position. β is bound between 2.0 and 4.0.

3. Use the fitted parameters from the previous step as a seed. The shower direction is kept fixed,

while S125, β, and the shower core position are refit. The shower core position is restricted

to a box with 70 m sides about the seeded core position.

The output of this maximization are estimates for the parameters ~r0 = (x0, y0), t0, ~n = (θ, φ), S125,

and β.



44

3.2.4 Reconstruction Performance

The resolution of the reconstructed shower core position and direction from the IceTop likelihood

reconstruction are shown in Figure 3.5. Note that the reconstruction procedure yields a shower

core position resolution between 3-9 meters, and a shower direction angular resolution between

0.2-0.45 degrees.

Figure 3.5: Air shower reconstruction performance. Top: Reconstructed shower core position
resolution. Bottom: Reconstructed shower direction angular resolution.
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The reconstructed S125 LDF parameter is highly correlated with the primary cosmic ray energy

and serves as a good energy proxy. Figure 3.6 shows the distribution of reconstructed S125 values

versus the true primary particle energy.

Figure 3.6: Histogram of the reconstructed log10(S125) vs. true primary energy for simulated air
shower events. The histogram is normalized such that each column sums to one. S125 is highly
correlated with energy and thus serves as a good energy proxy.
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3.3 In-Ice Energy Loss Reconstruction

The in-ice array detects Cherenkov radiation emitted by high energy muons as they make their

way through the Antarctic ice. The amount of light that each DOM in the array detects is related

to the energy loss per unit length of the muons traveling through the ice (often called simply the

“energy loss” and denoted by dE/dX), which is a function of the muon multiplicity of the bundle.

Specifically,

dEµ,B(X)

dX
=

Emax∫

Emin

dEµ(X)

dX

dNµ(X)

dEµ(X)
dEµ(X) (3.12)

where
dEµ,B(X)

dX is the muon bundle energy loss at a slant depth of X, Emin is the minimum energy

at ground level required for a muon to reach a depth of X, and Emax is the maximum muon energy

that can be produced from a primary particle with energy E0 and mass A. The muon bundle

energy loss is the primary composition-sensitive variable used in this work.

A maximum-likelihood based technique is used to reconstruct the muon bundle energy loss,

given the observed signals from the in-ice array DOMs. As muons pass through the ice, the

Cherenkov radiation emitted at each point along their trajectory can contribute to the observed

signals in each of the in-ice DOMs. The reconstruction algorithm partitions the muon bundle track

into segments, each 20 meters long, and treats each segments as a cascade that contributes to the

overall signal observed by the in-ice DOMs. Figure 3.7 depicts the segmented track contributions

to the observed DOM signals. Adding up the contributions from each segment, the observed signal

in the in-ice DOMs is given by:

Qexp,i =
∑

j

Λijxj + ρi (3.13)

where Qexp,i is the expected observed charge series in the i-th DOM, xj is the energy loss of the

j-th track segment, ρi is the average charge expected from noise in the i-th DOM, and Λij is the

expected charge at the i-th DOM from a 1 GeV cascade in the j-th track segment. The transmission

coefficients, Λij , are obtained from using spline smoothed simulation [49].
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Figure 5.1: Illustration of segmented dE/dx reconstruction of two subsequent cas-
cades. The circles represent the DOMs where Nk denotes the number of photons
N measured by DOM k. The vertical lines along the drawn track are the bin edges
of the defined dE/dx segmentation where Ei is the deposited energy in bin i. The
yellow stars visualize the two energy depositions of the double bang and the
outgoing wavefronts illustrate the light propagation from the energy depositions
to the DOMs. ⇤(~rk,~r 0i ) denotes the light yield factor from energy bin i at position
~r 0i to DOM k at position ~rk, i.e. how much of the light produced by this energy
deposition is measured by DOM k. The matrix on the right hand side defines the
linear relation between the energy depositions Ei and light measurements Nk.

di↵erent parts of the detector. Each DOM measures a superposition of the light
produced by di↵erent energy losses in di↵erent sections of the detector. The amount
of light which reaches a DOM produced by a specific energy deposition depends
on the angle, distance and all the ice properties in the light’s path. Fortunately,
this superposition of di↵erent light sources is linear, which allows deducing the
magnitude of the original light sources (and thus reconstructing the original energy
losses) by unfolding the measured PMT waveforms, which is what Millipede does.

Let’s start with a simplified form of Millipede, which only uses the total measured
amount of light in a DOM without time information. This algorithm can easily be
generalized to include time information later. We also ignore the stochastic nature
of light generation and propagation for a moment and assume these processes to be
deterministic. We will see later, that the reconstruction method for this deterministic
model is a good approximation to the solution obtained by maximum likelihood
estimation of the more realistic probabilistic model. Figure 5.1 is a visualization of
the following explanation.

Let Nk be the total number of measured photons by DOM k at position ~rk. The
value Nk depends generally on all energy depositions and produced noise photons
in the detector. Let ⇤(~rk,~r 0i ) · Ei be the number of photons produced by the energy
deposition Ei at the position ~r 0i , which are measured by the here considered DOM k.
The energy deposition Ei is assumed to be a point-like electro-magnetic cascade with
direction (✓,').
⇤(~rk,~r 0i ) is the light yield factor from energy deposition Ei to DOM k, which
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Figure 3.7: Diagram depicting the segmented energy loss reconstruction for the in-ice array. Circles
represent DOMs that measured Nk photoelectrons. The muon bundle track is segmented into bins
of 20 meters in length and are indicated by the periodically spaced lines perpendicular to the track
direction. The energy deposited in the n-th bin is given by En.

The aim of the reconstruction algorithm is to determine the energy losses, xj , in Equation 3.13,

given the observed DOM signals, Qi. This is achieved by maximizing the Poisson likelihood:

L =
∏

i

(
Qexp,i

)Qi

Qi!
exp(−Qexp,i) (3.14)

where Qi and Qexp,i are the observed and expected signals in the i-th DOM from Equation 3.13.

The above likelihood is maximized using the pre-conditioned conjugate gradient (PCG) method.

The segmented in-ice muon energy losses from the likelihood reconstruction are then fit to

produce an energy loss profile as a function of slant depth. Previous studies have demonstrated

that the composition resolving power is better when assessed at smaller slant depths [35]. So for

the purposes of this analysis, we take the muon energy loss to be evaluated near the top of the

in-ice array, for vertical showers, at a slant depth of X = 1500 m.

Figure 3.8 shows the reconstructed energy loss as a function of true energy for simulated proton

and iron induced showers. We can see, for a given true energy, iron induced showers have, on

average, a larger muon energy loss than proton showers. In Chapter 4, we will discuss how dE/dX
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is used to provide air shower primary mass identification.

Figure 3.8: The reconstructed in-ice muon bundle energy loss as a function of true energy for proton
and iron induced air shower simulation. For each energy bin the solid line indicates the median
energy loss, while the shaded region shows the 68% containment of the energy loss distribution in
that bin.
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3.4 Data Quality Cuts

Quality cuts are used to filter out events for which either the surface or in-ice reconstructions

are known to perform poorly. In particular, the reconstruction algorithms perform best with

coincident events in which the shower trajectory passes through the instrumented area and volume

of the surface and in-ice arrays. Several of the quality cuts applied are to ensure the rejection of

un-contained events [10]. The following set of data quality cuts are used for this analysis.

1. Minimum number of hits to perform quality reconstructions:

• At least 5 IceTop stations must trigger

• At least 8 in-ice array DOMs must trigger

2. Containment cuts to ensure that air showers pass through both the surface and in-ice arrays:

• The reconstructed shower core position must lie within the IceTop area

• The reconstructed shower track must pass through the in-ice array volume

• At least one IceTop tank must have a snow corrected signal greater than 6 VEM

• The neighboring tank in the same station as the largest signal tank must have a snow

corrected signal of at least 4 VEM

• The Icetop station with the largest deposited charge cannot be at the edge of the detector

3. Event topology cut:

• The fraction of triggered stations within a circle about the center-of-gravity of the shower

with radius to the farthest away hit station must be greater than 0.2

4. General reconstruction quality cuts:

• The IceTop maximum likelihood reconstruction is required to converge

• The LDF parameter β is required to be between 1.4 and 9.5

• The in-ice array reconstruction is required to converge with an log10(r log l) < 2.0
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• The total predicted charge from the in-ice reconstruction must be at least 90% of the

measured charge
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Chapter 4

Composition & Energy Estimation

A crucial component of this analysis is the ability to assign a primary particle energy and com-

position from cosmic ray air showers detected with IceCube. Given the availability of air shower

simulation and the corresponding simulated detector response, supervised machine learning is a

useful technique for automating these tasks. This chapter gives an overview of supervised machine

learning and discusses its application and use within this analysis. Specifically, we’ll cover how

reconstructed parameters from Chapter 3 are mapped to primary particle energy and composition.
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4.1 Supervised Machine Learning

Machine learning is the subset of artificial intelligence in which algorithms learn from data, rather

than being explicitly programmed. Given a set of data relevant to a specific task, machine learning

algorithms find statistical structure in the dataset to help accomplish the task. This is in contrast

with non-machine learning approaches in which a program with hand crafted rules is used to

accomplish the task.

Supervised machine learning is the subset of machine learning where a dataset X of labeled ex-

amples is used to develop an algorithm that maps between an input example and the corresponding

label (sometimes referred to as the target). The goal of supervised machine learning is to develop

a mapping f that yields predicted labels ŷ that generalizes well to future, yet unseen data.

ŷ = f(X) (4.1)

The dataset X, called the training dataset, is formatted such that each example in the dataset is a

row, while each column consists of a property that describe the examples. The columns are often

referred to as the features of the training dataset.

Supervised machine learning problems are typically divided into two categories: classification

problems and regression problems. The distinction between these two categories is based on the

label which is predicted. Classification tasks are those in which the label we wish to predict is

discrete (e.g. labeling primary particles as light or heavy), while regression tasks are those for

which the label is continuous (e.g. predicting primary particle energy). Figure 4.1 illustrates the

difference between typical classification and regression problems.

4.2 Model Validation

The goal of developing a model that generalizes well to unseen data in supervised machine learning

is different than in other optimization problem, e.g. maximum likelihood methods, where the

objective is typically to find the best fit solution, given a dataset. In supervised machine learning,

we want the model to perform well not only on the training dataset, but also generalize well to
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Figure 4.1: Diagram illustrating classification and regression tasks. Left: Example dataset where
each sample belongs to one of two classes (data points are shown in different colors to distinguish
their class label). The dashed line shows a decision boundary for a linear model that is used to
identify the two classes. Everything below the line is classified as class 0, while points above the
line are assigned to class 1. Right: Example regression problem where given (x, y) data points, a
model finds a polynomial function to best fit the data (shown by the solid line).

new data. In order to ensure the predictions from a trained model generalize well, and don’t just

describe the training dataset, model validation is paramount.

4.2.1 Cross Validation

One of the most commonly used ways to quantify how well a model generalizes is the k-fold cross

validation (CV) technique [50]. In k-fold cross validation, a training dataset is randomly partitioned

into k different subsets, or folds. This partitioning is such that each fold has approximately the same

number of samples. Next, k−1 of the folds are used as a dataset to train a model. The one fold that

was not used in training (called the test or validation fold) can then be used to calculate a model

performance metric for the model trained on the k−1 other folds. In this manner, the performance

of the model on unseen data can be estimated. This process is then repeated k−1 times, each time

choosing a different fold as the test fold. Finally, an average model generalization performance and

performance uncertainty are obtained by calculating the mean and standard deviation of the model

performance metrics for each iteration of the cross validation. Figure 4.2 illustrates the k-fold cross
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validation algorithm for k = 10.

Figure 4.2: Illustration of the k-fold cross validation algorithm (diagram depicts the k = 10 case).
Figure from [50].

For classification problems, a slight variant of the k-fold cross validation algorithm is often

used. This variant, the stratified k-fold cross validation algorithm, differs from the standard k-fold

algorithm only in how the training dataset is partitioned into folds. While the k-fold algorithm

performs this partitioning randomly, the splitting in the stratified k-fold algorithm is done randomly

while also preserving the percentage of samples for each class. This way, each fold has approximately

the same number of samples belonging to each class as the entire training dataset. Classification

problems in this work are validated using stratified 10-fold cross validation.

4.2.2 Hyperparameter Optimization

Machine learning algorithms have two distinct types of parameters: those that are learned during

the training process from data and those that are free parameters which parametrize the algorithm

itself. Parameters that aren’t learned directly from data are referred to as hyperparameters. For
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example, a one-dimensional polynomial regression model takes the form:

ŷ(X) =
n∑

i=0

wix
i (4.2)

where x is the independent variable, wi is the coefficient for the i-th power term, and n is the largest

power in the polynomial to consider. During the learning process, the polynomial coefficients wi are

determined from training data, but the maximum order n is a free parameter that must be specified

ahead of time. In this example case, the maximum polynomial degree n is a hyperparameter for

the model.

In many cases hyperparameters are related to the capacity of a model. In the polynomial

regression case, the larger the maximum polynomial degree n, the more complex a relationship can

be modeled (shown in Figure 4.3). For smaller model complexities, the model cannot accurately

represent the underlying structure of the data. This results in both a low training and testing cross

validation score and the model is said to underfit the training dataset. As the model complexity

increases, so to does the average training and testing performance. However, as the model capacity

becomes very large, the model is able to capture particularly complex structure that is specific

to the dataset used to train the model. In this case, the model performs exceedingly well on the

training dataset, but does not generalize well, resulting in a poor testing cross validation score.

Here the model is said to overfit the training dataset. Figure 4.4 illustrates the typical training and

testing performance as a function of model complexity. The ideal values for model hyperparameters

are those that avoid both under and overfitting.

Hyperparameter optimization is often done by choosing the combination of parameter values

that optimizes the testing cross validation score for the problem at hand. For example, in regression

tasks a common scoring function is the average mean squared error (MSE), while the fraction of

correctly labeled examples (the accuracy score) is often used in classification tasks.

This optimization is done numerically by sampling the space of possible hyperparameter com-

binations. There are several different ways to go about sampling the hyperparameter space: grid

search, random search [52], and model-based optimizations. For the grid search method, the user

selects a finite set of hyperparameter values to explore. A model is then trained for every combina-
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Figure 4.3: Example polynomial regression models for various values for the maximum polynomial
degree n. The same training data is used for each model and indicated by the gray data points.
For smaller values like n = 1, 2 the model has too low a capacity and cannot fully capture the
variation in the data, i.e. underfitting the training data. For larger values like n = 15, the model
becomes very complex and starts to fit fluctuations in the training, i.e. overfit the training data.
An optimal value of n = 3 avoids both under and overfitting.

tion of hyperparameter values. The combination that has the best validation score is then selected

as the optimal set of parameters. The downside to the grid search method is that the computa-

tional cost of performing the search grows exponentially with the number of hyperparameters. The

random search method randomly samples hyperparameter values according to user-defined proba-

bility distributions (e.g. uniform or log-uniform). The random search method will converge faster

when only a few hyperparameters have a significant influence on the model performance, which

is typical [52]. Figure 4.5 illustrates how the grid and random search methods compare when a

hyperparameter has little overall effect on model performance. For this work, we make use of the

random search method. We’ll now discuss the training features, models, and model validation used

to assign cosmic ray air showers a primary particle energy and composition.
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Figure 4.4: Diagram depicting typical model performance as a function of model complexity. For
low model complexity, both the training and testing validation scores are low (underfitting). For
high model complexity, the training score continues to increase while the validation score reaches a
maximum and then begins to decrease (overfitting). Optimal model complexity avoids both under
and overfitting. Figure adapted from [51].
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.

284

Figure 4.5: Comparison of grid and random search methods for hyperparameter optimization.
(Left) grid search is run for every combination of specified hyperparameter values. (Right) Ran-
dom search is run over randomly chosen hyperparameter values in accordance with a user-defined
probability distribution. Figure from [52].
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4.3 Composition Classification

On average, the more massive a cosmic ray particle, the more muon-rich the induced air shower

will be for a given energy. Thus, the ability to distinguish cosmic ray composition comes from

mass separation in the energy-muon number space. In Chapter 3 we discussed the reconstruction

algorithms used to engineer both the energy proxy parameter, S125, and muon number proxy,

dE/dX, for detected air showers. Figure 4.6 shows the reconstructed log10(S125) and log10(dE/dX)

distributions for light and heavy induced air shower simulation for various primary energies. We

Figure 4.6: The reconstructed log10(S125) and log10(dE/dX) for light (blue) and heavy (orange)
induced air shower simulation for various ranges of primary energies. There is composition sepa-
ration power between the light and heavy air showers in the log10(S125)-log10(dE/dX) space. The
reconstructed log10(S125) and log10(dE/dX) values vary slightly with the true zenith angle, θ, of
the cosmic ray primary. Here we show air showers with 0.95 ≤ cos(θtrue) ≤ 1.0.

can see that for a given primary energy, air showers from heavier cosmic ray primary tend to have

a larger value for dE/dX. However, the same value for dE/dX can be found for both light and

heavy air showers at different energies. The muon content, in terms of the reconstructed in-ice

energy loss, of air showers induced by heavier cosmic ray primaries is similar to that of air showers
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induced by a lighter primary at higher energies. This illustrate the need to measure both energy

and muon number proxies simultaneously.

To distinguish between light and heavy induced air showers, reconstructed variables from air

shower simulation are used as a training dataset for a classification model to predict whether a

detected air shower event originated from a light or heavy primary. The model used for this task is

the boosted decision tree (BDT) classification algorithm. The BDT implementation in the XGBoost

Python library is used1. The training features of the BDT classification dataset are: the energy

proxy log10(S125) from the IceTop reconstruction, the muon number proxy log10(dE/dX) from the

in-ice array reconstruction, and the cosine of the reconstructed shower zenith angle cos(θ) from the

IceTop reconstruction. It’s worth noting that several additional candidate training features (e.g.

total deposited in-ice charge, charge deposited at different depths in the in-ice array, etc.) were

also evaluated, however none were found to improve the composition classification accuracy and so

were not included in the final set of training features.

The BDT algorithm is an ensemble learning method. In ensemble methods, a collection of

models are each trained and their predictions are aggregated together to obtain a single output

that can have better performance than any of the individual models that make up the ensemble.

In the case of a BDT, the ensemble is composed of many decision trees.

Decision tree classifiers are trained by sequentially partitioning a dataset into nodes such that

samples with the same labels are grouped together. To begin, all samples in the training dataset

begin in a single node, the root node. The root node is then split into two child nodes according

to a splitting condition on a feature in the dataset. This splitting condition is chosen such that

it minimizes the impurity of the two resulting child nodes. The metric used in this analysis to

quantify the impurity of a node is the Gini impurity [53]:

IG = 1−
∑

i=1

p2
i (4.3)

where pi is the fraction of samples belonging to class i in the node. The Gini impurity is a measure

of how mixed the classes of a node are. For example, a node with samples belonging to a single

class is completely pure and has an impurity of IG = 0. A node with an equal mixture of two

1Version 0.72 of XGBoost was used for this work
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classes is maximally impure and has IG = 0.5. There are other potential impurity metrics one

could choose to use, however this choice generally has a negligible impact on model performance.

The process of node splitting is then applied to each child node until a stopping condition is met.

There are several different stopping conditions that may be met: a minimum required decrease in

the impurity to split a node, or requiring a minimum number of samples in a node to perform a

splitting. However, the stopping condition most closely associated with the decision tree model

complexity is the maximum number of splits that are allowed. This maximum number of splits, or

maximum depth of the tree, is a hyperparameter of all tree-based learning models.

The series of decision trees that are sequentially trained in the BDT have their predictions

aggregated in an additive fashion. That is

f(x) =
∑

m=1

γmfm(x) (4.4)

where f(x) is the full BDT, fm(x) are the individual decision trees, and γm are expansion coefficients

that are chosen to minimize a loss function that quantifies the error in the BDT model predictions.

A logistic loss function is used in this analysis. The process of sequentially training models and

aggregating their prediction is called boosting. For a thorough discussion of boosted decision trees,

and additive models more generally, please see [53].

In order to determine the optimal hyperparameters for the composition classification BDT, a

random search is performed. Figure 4.7 shows the results of the hyperparameter optimization.

Also shown in the figure is a comparison of the cross-validated training and testing accuracies as

a function of the BDT tree maximum depth. While the random search yields an optimal value for

the maximum depth of 6, to avoid overfitting a maximum depth of 4 is used instead. The final

chosen hyperparameter values for the BDT are shown in Table 4.1.

The classification accuracy for the BDT composition model as a function of true primary energy

is shown in Figure 4.8. The solid line and error bands for each energy bin indicate the mean and

standard deviation of the 10-fold cross validation testing accuracies, respectively. Note that the

model has a roughly uniform classification accuracy of ∼75% across the energy range relevant for

this analysis.
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Figure 4.7: Top: Random search hyperparameter optimization for composition classifier. The
black data points show individual hyperparameter combinations tested. The color scale indicates
the average cross-validation accuracy score on the test fold. The orange star indicates the hyper-
parameter combination that maximizes the testing accuracy. Bottom: Validation curve displaying
the average accuracy score for the composition BDT classifier on the testing and training CV folds
as a function of the maximum tree depth. While the random grid search optimization yields an
optimal maximum depth of 6, a maximum depth of 4 was chosen in order to reduce overfitting. A
learning rate of 0.05 is used here.



62

Parameter Name Value

Number of decision trees in BDT 150

Node splitting criterion Minimize Gini impurity

Maximum depth of trees 4

Minimum samples required in a node 1

Boosting loss function to minimize Logistic loss

Boosting learning rate 0.05

Minimum required loss reduction 0

Table 4.1: Tuned hyperparameters for boosted decision tree used for composition classification.
Model implementation from XGBoost.

Figure 4.8: Composition classification accuracy as a function of energy. Classification accuracy
is defined to be the fraction of examples which are correctly labeled. The solid lines indicate the
average testing cross validation accuracy for each energy bin, while the shaded bands show the
standard deviation of the accuracy scores.
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4.4 Energy Reconstruction

A multiple linear regression model is used to assign each air shower event a reconstructed energy.

In such a model, the target variable, in this case the primary particle energy, is represented as a

combination of the dataset features. The training dataset features used for the energy regression

model are the same as those used for composition classification in Section 4.3. The mapping

between these features and the reconstructed primary energy is given by:

log10(Ereco) = β0x0 + β1x1 + β2x2 + β01x0x1 + β02x0x2 + β12x1x2 (4.5)

where x0, x1, and x2 are cos(θ), log10(S125), and log10(dE/dX), respectively. The set of coefficients

{β} are determined from the training dataset using the method of ordinary least squares2. The

optimized values for the coefficients are shown in Table 4.2. Inclusion of interaction terms between

the features (e.g. the x0x1 term in Equation 4.5) allows us to model when the effect a training

feature has on the output variable is influenced by another feature.

Coefficient β0 β1 β2 β01 β02 β12

Value -0.64421306 0.3867754 0.38175117 0.43598762 -0.30033984 0.00855433

Table 4.2: Multiple linear regression model coefficients for energy reconstruction.

The performance of the trained energy regression model is illustrated in Figure 4.9. In addi-

tion, the energy reconstruction bias and resolution is shown in Figure 4.10. The energy resolution

decreases with energy and ranges between 0.125 ≤ log10(Ereco/Etrue) ≤ 0.05, while the bias in-

creases with energy. Note that both the energy bias and resolution are of order of the energy bin

size used in this analysis, ∆ log10(E/GeV) = 0.1. Inclusion of additional feature interaction terms

in the multiple linear energy regression model were shown to decrease the energy reconstruction

bias at higher energies. However, this reconstruction bias reduction has a negligible affect on the

results of this analysis. Therefore, additional feature interaction terms were not included. How the

reconstructed energy bias and resolution are mitigated is the topic of Chapter 5.

Several more complex regression models, such as tree-based, support vector machine, and neural

network models, where also evaluated as candidate models for primary particle energy regression.

2Version 0.19.1 of Scikit-learn [54] was used for the linear regression model
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Figure 4.9: Distribution of true and reconstructed primary particle energies. The histogram is
normalized such that each column sums to one

However, these models were found to have a similar performance to the more simple multiple linear

regression model. This lead us to select the linear regression model for energy reconstruction in

this work.
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Figure 4.10: Reconstructed energy bias and resolution. For each true energy bin the reconstructed
energy bias is the median of the log10(Ereco/Etrue) distribution, while the reconstructed resolution
is the 68% containment of the log10(Ereco/Etrue) distribution for that true energy bin.
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Chapter 5

Iterative Unfolding

In an ideal world, experimentalists would have access to a perfect detector that makes no error in

measuring a desired quantity. However, real detectors have finite resolutions, characteristic biases

that cannot be eliminated, and less than 100% detection efficiencies. Indeed, Figures 4.8 and 4.10

show we assign air showers the correct primary particle composition approximately 75% of the time

and estimate the energy with an resolution of roughly 0.1 in log10(E/GeV). Unfolding is a method

that corrects for these biases and resolutions. This chapter discusses the unfolding technique used

to incorporate our knowledge of how our detector distorts our measurements to help mitigate these

effects.
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5.1 The Inverse Problem

When scientists make measurements there is typically some underlying true distribution of interest

(e.g. the energy spectrum of cosmic rays). However, distortions to this true underlying distribution

are introduced by the imperfections of measuring devices. Therefore, experimental observation can

be characterized by two quantities: the true distribution we wish to measure and the observed

distribution we actually measure. An important task for experimentalists is to be able to infer the

true distribution from an observed distribution, i.e. to correct for the distortions caused by the

measurement process. This correction, or deconvolution, is known as unfolding.

Typically, through simulation, effects from a measurement process can be encoded into a matrix

that relates how true distributions, or causes, are smeared into observed distributions, or effects.

Namely, a mapping between causes Cµ and effects Ej is developed:

n(E) = R φ(C) (5.1)

where n(E) is the counts distribution for the observed effects, φ(C) is the true cause counts dis-

tribution, and R is the response matrix that encodes how a detector smears causes amongst the

various observed effects. Note that both n(E) and φ(C) are simply histograms of counts; n(Ei)

and φ(Cµ) are the counts in the i-th effect bin and µ-th cause bin, respectively.

Ideally, one could simply invert the response matrix in Equation 5.1 to obtain the mapping from

observed effects back to true causes. However, in practice this inversion is often either not possible,

i.e. R is a non-invertable matrix, or problematic. For example, due to statistical fluctuations in

the simulation used to construct R, often times inverting R can lead to non-physical, negative

counts in the true cause distribution. When these problems arise, one must instead construct a

pseudo-inverse, or unfolding, matrix that is used to map from observed effect back to true causes:

φ(C) = M n(E) (5.2)

where M ≈ R−1. There are several different techniques for constructing an unfolding matrix, each

with its own benefits and tradeoffs. For this work, we use the D’Agostini iterative unfolding method

as outlined in [55] and discussed in the following section. This method has the benefit of being

able to converge to a result independent from the starting condition of the unfolding.
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5.2 D’Agostini Iterative Unfolding

D’Agostini iterative unfolding applies Bayes’ theorem to the inverse problem. Bayes’ theorem states

that the probability that a given observed effect Ej originates from a cause Cµ is given by

P (Cµ|Ej) =
P (Ej |Cµ)P (Cµ)

nC∑
ν
P (Ej |Cν)P (Cν)

(5.3)

where nC is the number of possible causes and P (Cµ) is the probability of the µ-th cause. P (Ej |Cν)

is the probability that a given cause Cν results in an observed effect Ej , i.e. the response matrix R.

We recognize the probabilities of the possible causes P (Cµ) as a prior distribution that encodes our

current knowledge of the true underlying distribution of causes. Being a probability distribution,

the prior distribution is normalized such that
∑
ν
P (Cν) = 1.

The construction of P (Cµ|Ej) in Equation 5.3 allows us to write the true cause distribution as:

φ(Cµ) =

nE∑

i=1

P (Cµ|Ei)n(Ei) (5.4)

where nE is the number of possible effects. Given that real detectors generally have less that 100%

detection efficiencies, we allow for the possibility that a cause will not result in any measured effect.

That is, the response matrix is normalized to our detection efficiencies εµ for the cause Cµ:

0 ≤ εµ =

nE∑

j=1

P (Ej |Cµ) ≤ 1 (5.5)

Using this normalization condition, we can rewrite Equation 5.4 as:

φ(Cµ) =
1

εµ

nE∑

i=1

P (Cµ|Ei)n(Ei) (5.6)

=

nE∑

i=1

Mµi n(Ei) (5.7)

where M , the pseudo-inverse matrix for the unfolding, is defined to be:

Mµj =
P (Ej |Cµ)P (Cµ)

[ nE∑
k

P (Ek|Cµ)
][ nC∑

ν
P (Ej |Cν)P (Cν)

] (5.8)

The unfolding matrix is composed of the response matrix P (E|C), which is constructed from

simulation, the measured effects distribution n(Ei), as collected from a detector, and our best prior
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knowledge of the underlying cause distribution P (Cµ). Using these quantities, along with Equations

5.7 and 5.8, we can obtain an unfolded true cause distribution. This unfolded distribution now

represents our best estimate of the cause distribution. We can now iteratively apply this unfolding

procedure, at each step using the unfolded distribution from the previous iteration as the prior

distribution for the next iteration of unfolding. In this manner, the unfolding matrix for the i-th

iteration

M i
µj =

P (Ej |Cµ)φi(Cµ)

εµ
∑
ρ
P (Ej |Cρ)φi(Cρ)

(5.9)

is used to produce the unfolded distribution at the i+ 1 iteration

φi+1
µ =

∑

j

M i
µjn(Ej) (5.10)

Unfolding iterations continue until some specified stopping condition is met. For example, a statisti-

cal test comparing the unfolded distribution between subsequent iterations is used as a convergence

criterion for this work.

While any prior may be chosen as the starting point for unfolding, it is common practice

for experimenters to choose either a uniform or a non-informative Jeffreys prior [56] to avoid

introducing any bias into the unfolding procedure. Jeffreys prior, which is given by:

PJ(Cµ) =
1

log(Cmax/Cmin)Cµ
(5.11)

where Cmin and Cmax are the minimum and maximum allowed values the true causes Cµ can take,

is often an appropriate choice when the cause distribution spans several orders of magnitude.

5.3 Unfolding Uncertainties

While typical Poisson counting errors can be used to estimate the uncertainty of the observed

counts distribution n(E), this is not the case for the unfolded counts distribution φ(C). During

deconvolution, each bin in the unfolded distribution receives contributions from several different

n(Ej) in a correlated manner. From Equation 5.4, we can see that two sources of uncertainty

for the unfolded distribution need to be considered: those from the Poisson uncertainties of the
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observed counts distribution n(E), and those originating from the uncertainties in the response

matrix P (E|C) which is built from a limited amount of Monte Carlo simulation. That is:

V = V data + V response (5.12)

where V data and V response are the contributions to the full covariance matrix V from the observed

distribution n(E) and response matrix P (E|C) uncertainties, respectively.

The unfolding uncertainty estimates, as outlined in [55] and [57], are shown below. Here, we

only show the final result; full derivations of these terms are shown in the supplemental materials

included in [58]. In addition, for convenience we adopt the shorthand notation P (Ei|Cµ) → Pµi,

φ(Cµ) → φµ, and n(Ej) → nj . The error contributions from the observed distribution are given

by:

V data =
∂φi+1

∂n
cov(n, n′)

∂φi+1′

∂n
(5.13)

with

cov(nk, nj) =





nj(1− nj
Ntrue

) if k = j

− njnk
Ntrue

if k 6= j

(5.14)

and
∂φi+1

µ

∂nj
= Mµj +

φi+1
µ

φiµ

∂φiµ
∂nj
−
∑

σ,k

εσ
nk
φiσ
MµkMσk

∂φiσ
∂nj

(5.15)

While the error contributions from the uncertainties on the response matrix are given by:

V response =
∂φi+1

∂P
cov(P, P ′)

∂φi+1′

∂P
(5.16)

with

cov(Pρr, Pλs) = σρrσλsδρλσrs (5.17)

and

∂φi+1
µ

∂Pλk
=
δλµ
εµ

(
nkφ

i
µ

fk
− φi+1

µ

)
− nkφ

i
λ

fk
Mµk

+
φi+1
µ

φiµ

∂φiµ
∂Pλk

−
∑

ρ,j

nj
ερ
φiρ
MρjMµj

∂φiρ
∂Pλk
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Note that Ntrue =
∑
µ
φ(Cµ), δλµ is the Kronecker delta, σλs is the uncertainty on Pλs, and the

superscripts i and i + 1 refer to the unfolding iteration number. After each unfolding iteration,

using the above equations, the uncertainty on the unfolded cause distribution can be determined.

With both the iterative unfolding and uncertainty estimation methods established, we can now

apply this technique to account for our known composition and energy detector response.
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5.4 Energy and Composition Response Matrix

The underlying true distribution we wish to measure for this analysis is the energy spectrum for

light and heavy induced air showers. Cast in terms of an inverse problem, the causes are air showers

with a particular true primary energy and composition that get smeared into reconstructed energy

and composition effects bins. Using simulated light and heavy induced air showers along with the

composition classification and energy regression models presented in Chapter 4, we can construct a

dataset consisting of the true and reconstructed primary energy and composition for each simulated

event. Using this simulation dataset, we can build a true and reconstructed energy-composition

histogram that serves as the basis for our detector response matrix.

Iterative unfolding is agnostic to the particular definition of cause and effect bins. However,

it is important that once a binning convention is chosen, it remains consistent throughout the

unfolding. Here, we choose the energy-composition binning scheme for both the true and observed

variables to be arranged in an alternating fashion as illustrated in Figure 5.1. Energy bins are

equally spaced in log-energy from log10(E/GeV) = 6.1 to log10(E/GeV) = 8.0 with a bin width of

0.1 in log10(E/GeV).

E1 E2 E3

. . .Light Light Light HeavyHeavyHeavy

Figure 5.1: The energy-composition bins for both the true and observed variables are arranged in
an alternating fashion. Specifically, the first two cause bins contain light and heavy induced air
showers, respectively, for the first true energy bin. The third and fourth cause bins contain light
and heavy air showers, respectively, for the second true energy bin, and so on. A similar binning
scheme is also used for the observed energy and composition.

In order for our energy-composition histogram to be used as a response matrix, it must be

normalized to the detection efficiencies as in Equation 5.5. The detection efficiency ε is defined to
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be:

ε(Ei) =
Npass(Ei)

Ngenerated(Ei)
(5.18)

where Ngenerated(Ei) is the number of simulated air showers in the i-th true energy bin, while

Npass(Ei) is the number of showers which pass the data quality cuts (Section 3.4) in the i-th

true energy bin. Figure 5.2 shows the detection efficiency as a function of true primary energy

for simulated light and heavy induced air showers. To smooth out statistical fluctuations in the

Figure 5.2: Detection efficiency as a function of primary energy for simulated light and heavy
induced air showers. A slanted sigmoid function was fit to the efficiencies for each composition
group (dashed line). Note that the overall 10−2 scale of the efficiencies is due to the relatively large
simulation generation area (a circle of radius 1700 m).

efficiencies, a so-called “slanted sigmoid” was fit to the efficiencies for both composition groups

independently [59], which has the functional form:

εfit(E) =
p0 + p3 · log10(E)

1 + exp(−p1 · log10(E) + p2)
(5.19)

where p0, p1, p2, and p3 are fit parameters which were determined using the method of least

squares. The best fit values for these parameters are listed in Table 5.1. These smoothed detec-
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Composition p0 p1 p2 p3

Light 7.87 46.91 2.96× 10−4 6.88× 10−3

Heavy 10.04 60.42 8.20× 10−4 3.09× 10−3

Table 5.1: Detection efficiency fit parameters for light and heavy induced air showers

tion efficiencies are used to normalize the energy-composition response matrix, which is shown in

Figure 5.3. Figure 5.4 displays the same response matrix decomposed into separate panels for each

true-reconstruction composition pair. Using the energy-composition response matrix, we can now

proceed with unfolding the observed counts distribution.

Figure 5.3: Energy and composition detector response matrix. The binning scheme used is illus-
trated in Figure 5.1. The columns of the response matrix are normalized to the detection efficiencies
ε shown in Figure 5.2.
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Figure 5.4: Detector response matrix decomposed into separate panels for each true-reconstruction
composition pair. The true and classified compositions are indicated in each panel.
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It’s worth noting that as part of the work for this analysis, and the work presented in [60],

a Python package to implement the iterative unfolding algorithm was developed. The package,

PyUnfold1, was published in the Journal of Open Source Software [58] and is used to perform

the unfolding in this analysis. Further details regarding PyUnfold, including motivating factors,

features, and a toy example, are presented in Appendix C.

1https://github.com/jrbourbeau/pyunfold
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Chapter 6

Composition-Resolved Cosmic-Ray

Spectra

In this chapter, we present the results for the measured light, heavy, and all-particle cosmic-ray

energy spectra at PeV energies. We introduce the details of the dataset used and then discuss

the process for converting the unfolded counts distribution to a flux. In addition, a detailed study

of how various sources of systematic uncertainty impact the results of this measurement is also

presented.
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6.1 Dataset

The experimental data used in this analysis was collected over a single year by the IceCube Ob-

servatory from April 2012 through May 2013. A total of 6,853,826 air shower events passed the

applied data quality cuts (Section 3.4) and are used for this work. The number of events in each

reconstructed energy bin is, as expected, steeply falling, with the highest energy bin containing

794 events. In addition, while there is no explicit zenith cut applied, the requirement of coincident

events that pass through both the IceTop and in-ice arrays place an effective geometric limit on the

observable zenith range, as indicated in Figure 6.1. The maximum zenith angle observed is 37.65◦.

Figure 6.1: Distribution of the reconstructed cos θ for dataset. The maximum zenith angle observed
is 37.65◦.

An important characteristic of the data collection process is the amount of time in which the

detector is actively recording data, often called the detector livetime. Ideally, the livetime for a

single data taking run would simply be the difference between the end and start times for the run.

However, due to periods of instability within a run, a simple time difference is not sufficient to

measure the detector livetime. Instead, the distribution of time differences between events is fit

using an exponential function N(∆t) = N0 exp (−∆t/τ), where ∆t is the time difference between
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events, N0 is a normalization, and τ is the mean time difference between events. The detector

livetime is then calculated via multiplying the total number of events by the mean time difference

between events τ . The livetime is determined independently for each month of data. The event

time difference distribution and exponential fit for July 2012 is shown in Figure 6.2. The monthly

livetimes are then summed together to obtain the livetime for the entire dataset, 329.192 days.

Figure 6.2: Time difference between events distribution for data collected during July 2012. The
orange curve shows the exponential fit N(∆t) = N0 exp (−∆t/τ).
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6.2 Composition-Separated Cosmic-Ray Spectra

After running air shower event reconstructions and applying the composition and energy regression

models to the detected events in our dataset, we can obtain a measured counts distribution of both

light and heavy events for each energy bin. The unfolding procedure, using the detector response

matrix from Chapter 5, takes this counts distribution and accounts for energy and composition bin

migration and detection efficiencies, providing an unfolded distribution of expected counts for each

mass group binned in the true energy.

We can now convert this unfolded counts distribution to a flux. From Equation 1.1, the flux

for the i-th energy bin is given by:

J(Ei) =
Ni

∆Ei Aeff ∆Ω ∆t
(6.1)

where Ni is the number of counts in the i-th energy bin, ∆Ei is the width of the bin, Aeff is the

effective area, ∆Ω is the solid angle, and ∆t is the detector livetime. Note that the unfolding

method already takes into account detection efficiencies and thus only the simulated thrown area

needs be included here.

In order to avoid any a priori assumptions about the spectra, a flat Jefferys prior was chosen as

the seed for the unfolding procedure in this analysis. In addition, a Kolmogorov-Smirnov (KS) test

is used to compare unfolded distributions between subsequent iterations. Once the corresponding

KS test statistic falls below a threshold of 0.005, the unfolding process is said to have converged and

the final unfolded distribution is returned. This procedure was shown to provide a final unfolded

distribution that is independent of the initial chosen prior within the associated uncertainties. The

impact of choosing different priors, as well as a series of data challenges to validate the unfolding

method, are presented in Appendix B.

The unfolded cosmic-ray energy spectrum for the light, heavy, and all-particle spectra are shown

in Figure 6.3, while Figure 6.4 shows the same spectra scaled by a factor of E2.7 to highlight the

underlying structure of the distributions. Note that, from the binning scheme outlined in Section

5.4, only the energy distributions for the light and heavy mass groups are obtained directly. The

all-particle counts distribution is determined by summing both the light and heavy unfolded counts
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in each energy bin. The values for the unfolded flux in each energy bin are listed in Tables A.1,

A.2, and A.3.

Figure 6.3: Unfolded cosmic-ray energy spectra for the light, heavy, and all-particle mass groups.
The shaded bands indicate the uncertainty due to the limited Monte Carlo simulation available to
build the unfolding response matrix (V response from Equation 5.16). The vertical error bars show
the statistical uncertainties from the experimental data.
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Figure 6.4: Scaled by E2.7. Unfolded cosmic ray energy spectra for the light, heavy, and all-particle
mass groups. The shaded bands indicate the uncertainty due to the limited Monte Carlo simulation
available to build the unfolding response matrix (V response from Equation 5.16). The vertical error
bars show the statistical uncertainties from the experimental data.
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6.3 Systematic Uncertainties

A detailed study regarding several sources of systematic uncertainties in this analysis has been

conducted. Generally, the sources of systematic uncertainty fall into three separate categories:

1. Uncertainties due to limited Monte Carlo statistics for constructing the detector response

matrix

2. Uncertainties due to our understanding and calibration of the surface and in-ice arrays

3. Uncertainties due to our modeling of hadronic interactions

For each of these sources of uncertainty, with the exception of the analysis method systematic, a

systematic Monte Carlo simulation dataset is constructed. Using this systematic simulation set, a

new detector response matrix is constructed and used to unfold the observed counts distribution

to produce an unfolded flux. It is important to note that this is the only modification made when

determining the impact of systematic uncertainties. With this procedure we are estimating how

sensitive our spectrum measurement is to changes in our nominal understanding of the detector

and interaction models used. A summary of the systematic uncertainties for the light, heavy, and

all-particle cosmic-ray spectra is shown in Figure 6.5. Likewise, Tables 6.1, 6.2, and 6.3 provide

the percent uncertainty of these systematics for each spectra in the first, middle, and last energy

bin considered. A detailed discussion of each systematic is presented in what follows.
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Figure 6.5: Comparison of the unfolding, detector, and hadronic interaction model systematic
uncertainties. The nominal value for the light, heavy, and all-particle unfolded flux are indicated
by the blue, orange, and green solid lines in each energy bin, respectively. The variation in the flux
arising from each source of systematic uncertainty are shown by the corresponding shaded regions.
The lower legend indicates which systematic corresponds to which shade.
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Systematic 106.45 GeV 107.15 GeV 107.75 GeV

Unfolding ±11.23% ±12.18% ±18.23%

Detector -11.84% / +35.37% -30.55% / +22.26% -73.87% / +155.07%

Hadronic interaction model -16.33% / +4.63% -58.62% -98.30% / +19.01%

Total -23.09% / +37.40% -67.22% / +25.37% -124.31% / +157.29%

Table 6.1: Systematic uncertainty summary for the light mass group cosmic-ray energy spectrum.
Estimated effects due to the various sources of uncertainty are shown for the first, middle, and last
energy bin.

Systematic 106.45 GeV 107.15 GeV 107.75 GeV

Unfolding ±13.0% ±11.59% ±10.30%

Detector -48.21% / +42.62% -21.57% / +30.10% -26.39% / +21.15%

Hadronic interaction model -17.79% / +39.44% +23.08% -8.33% / +11.39%

Total -53.01% / +59.51% -24.49% / +39.66% -29.53% / +26.14%

Table 6.2: Systematic uncertainty summary for the heavy mass group cosmic-ray energy spectrum.
Estimated effects due to the various sources of uncertainty are shown for the first, middle, and last
energy bin.

Systematic 106.45 GeV 107.15 GeV 107.75 GeV

Unfolding ±8.55% ±8.50% ±9.09%

Detector +11.43% -4.94% / +16.07% -5.45% / +17.85%

Hadronic interaction model -3.67% / +4.50% -17.51% -15.17% / +0.51%

Total -9.30% / +14.97% -20.08% / +18.18% -18.51% / +20.04%

Table 6.3: Systematic uncertainty summary for the all-particle cosmic-ray energy spectrum. Es-
timated effects due to the various sources of uncertainty are shown for the first, middle, and last
energy bin.
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6.3.1 Unfolding Systematic Uncertainty

There is an uncertainty on the unfolded counts distribution due to the finite amount of Monte

Carlo simulation available to construct the detector response matrix. The determination of this

uncertainty, the V response term in Equation 5.12, is discussed at length in Section 5.3. This term

is treated as a systematic uncertainty in the sense that it does not arise from the data themselves

and instead is reduced upon an increase of more Monte Carlo simulation statistics. The magnitude

of this uncertainty is shown in Figures 6.3 and 6.4 by the shaded error bands.

6.3.2 Detector Systematic Uncertainties

Detector-related uncertainty from the IceTop energy calibration, snow correction, and in-ice light

yield also impact this work. Estimates for how these effects manifest themselves are summarized in

Table 6.4. Note that the IceTop energy calibration and snow correction systematics influence the

shower energy proxy S125, while the in-ice light yield uncertainty alters the muon number proxy

dE/dX.

Uncertainty source Estimated effect

IceTop energy calibration ±3% in S125

IceTop snow correction ±0.2m in λeff

In-ice light yield +9.6%, -12.5% in in-ice DOM efficiency

Table 6.4: Summary of detector systematic uncertainties and how each effect manifests as it related
to this work.

From Section 3.2.1, snow coverage atop each IceTop tank leads to a reduction in the deposited

signal measured by the tanks. In order to account for this effect, the measured signal for each tank

is corrected via an exponential absorption model (Equation 3.7) with effective absorption length

λeff. The optimal value of λeff = 2.25 m was determined to yield a consistent S125 distribution, on

average, across the entirety of IceTop with different tank snow heights. However, snow attenuation

effects are known to vary with primary particle energy, zenith angle, and mass. An uncertainty

of ±0.2 m in the effective absorption length of λeff is used to capture these additional variational

factors [36].



87

In addition, the IceTop tank calibration discussed in Section 2.4, in which the conversion factor

from number of observed photoelectrons to the VEM charge unit is determined, also introduces

some uncertainty to our results. Based on simulation studies [61], tank calibration has been shown

to be done on the 2-3% level. This resolution on the photoelectron-to-VEM conversion translates

to this analysis as a ±3% uncertainty in the reconstructed S125 energy proxy.

Lastly, our knowledge of the in-ice light yield also affects the measured spectra. The light yield

in ice is an important aspect of the in-ice reconstruction outlined in Section 3.3, which engineers the

composition-sensitive muon energy loss dE/dX variable. Several factors enter into the in-ice light

yield uncertainty which are summarized in Table 6.5. First, there is an uncertainty on the photon

detection efficiency of the in-ice DOMs of ±3% which linearly translates to a ±3% uncertainty in

the measured charge. In addition, our modeling of photon scattering and absorption properties

in the ice influence the light yield. Values used to constitute these uncertainties are a ±10%

uncertainty on the scattering and -7.1% uncertainty on the scattering and absorption parameters

[62]. Work is currently underway to reduce the size of the scattering and absorption errors, and it

is known that the estimates used in this work are, in fact, over estimates. Likewise, the effective

scattering length of photons in hole ice, the ice which was melted and then allowed to refreeze

during detector construction, is also considered. The nominal value for the hole ice scattering

length of 50 cm is used, while lengths of 30 cm and 100 cm are used to determine the effect of

variations. We assume all in-ice uncertainties are uncorrelated and sum them in quadrature to

determine the net uncertainty. This is an oversimplification that results in an over estimate of the

combined uncertainty. The net result of in-ice light yield uncertainties is a +9.6% and -12.5% shift

in the detection efficiency for the in-ice DOMs.

The resulting impacts of these detector-related uncertainties on the unfolded energy spectra are

shown in Figure 6.6. It’s clear that the in-ice uncertainties have the largest influence on the final

unfolded spectrum measurement. Note that the detector uncertainties for the all-particle spectrum

are generally much smaller than for the individual mass groups. This is because the shifts in the

light and heavy spectra are anti-correlated in each energy bin and of roughly a similar magnitude,

resulting in a much smaller uncertainty on the all-particle spectrum.
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Effect Light yield shift

10% scattering +3.6%

10% absorption -11.8%

-7.1% scattering and absorption +7%

30 cm hole ice scattering +4.5%

100 cm hole ice scattering -2.9%

DOM efficiency ±3%

Total light yield effect +9.6%, -12.5%

Table 6.5: Summary of in-ice light yield sources of uncertainty.

Figure 6.6: Comparison of detector systematic uncertainties. The nominal value for the light,
heavy, and all-particle unfolded flux are indicated by the blue, orange, and green solid lines in
each energy bin, respectively. The variations in the flux arising from each source of systematic
uncertainty are shown by the corresponding shaded regions. The lower legend indicates which
systematic corresponds to which shade.
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6.3.3 Hadronic Interaction Model Uncertainties

Interpreting detected air shower signals with ground-based experiments relies heavily on modeling

the hadronic interactions which occur during shower development. Unfortunately, the interactions

needed to model these processes are not well constrained by experimental data. As of Run II at

the LHC, protons are accelerated to an energy of 6.5 TeV and positioned to collide, producing a

center-of-mass energy of 13 TeV [63]. This corresponds to a roughly 90 PeV fixed-target energy,

which is comparable to the cosmic ray case. However, IceCube is sensitive to cosmic ray primaries

up to ∼ 103 PeV, well above the maximum energy attainable at the LHC. In addition, accelerator

experiments, like ATLAS and CMS at the LHC, have their detectors configured to measure so-

called hard processes, in which there are large amounts of momentum transfer. However, cosmic-

ray experiments detect particles from soft interactions, where there are relatively low amounts of

momentum transfer. Thus, the application of hadronic interaction models to cosmic-ray air shower

development involves extrapolation in both energy and phase space.

The three leading interaction models used for air shower simulation are the Sibyll [39], QGSJet

[40], and EPOS [41] models. Each of these models is based on the theoretical Gribov-Regge multiple

scattering model, in which interactions are represented by an exchange of one or more pomerons

[64]. However, the models differ in the assumptions, parameterizations, and experimental data

they choose to use, which has important consequences for the final air shower observables.

The QGSJet and Sibyll models are both optimized for air shower simulations, however they

do so in different ways. QGSJet has a small set of parameters to minimize the uncertainties

introduced by extrapolation to higher energies. However, this comes at the cost of having a less

detailed description of final stage hadronic interactions, which limit the data sets to which it can

be compared. In contrast, Sibyll is based on the dual parton and minijet model. EPOS, on the

other hand, is used by both the cosmic-ray and accelerator physics communities. As opposed to

QGSJet and Sibyll, EPOS is optimized to describe accelerator data from heavy ion interactions

and has many parameters that must be tuned.

For this analysis, the Sibyll 2.1 hadronic interaction model was used to generate the nominal

air shower simulation. However, Sibyll 2.3, QGSJet-II-04, and EPOS-LHC were used to determine
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how sensitive the final unfolded spectrum measurements are to changes in the interaction model

used. Note that Sibyll 2.3, QGSJet-II-04, and EPOS-LHC are all newer, post-LHC versions of

their respective models that have been updated to include recent experimental LHC results. The

nominal Sibyll 2.1 model is a pre-LHC version of the Sibyll model.

The primary effect the choice of interaction model has on this analysis is in the number of

muons produced in air showers. Figure 6.7 shows the ratio of number of air shower muons for

various hadronic interaction models as compared to Sibyll 2.1 as a function of primary particle

energy. We can see the post-LHC interaction models generally produce more muons as compared

to Sibyll 2.1. This increase in number of muons manifests itself as a shift in the reconstructed in-ice

muon number proxy dE/dX. Figure 6.8 illustrates how dE/dX varies for the different interaction

models as a function of S125. We can see that the EPOS-LHC model, which is the least optimized

for air showers, gives the largest difference in dE/dX. The corresponding influence on the measured

light, heavy, and all-particle energy spectrum for different choices of hadronic interaction model is

shown in Figure 6.9.
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the difference between nuclei, in particular for muons of low energy.

4. Conclusion & Outlook

We have developed a new version of Sibyll, called Sibyll 2.3c, by re-tuning the model version 2.3
to obtain a better description of NA49 data. It was found that Sibyll 2.3c approximately obeys
Feynman scaling in the fragmentation region up to the highest energies and gives a better descrip-
tion of the measured kaon production spectra than previous versions. The predictions for extensive
air showers are very similar to Sibyll 2.3, as are the predictions for production of charmed hadrons.
Larger changes are found for inclusive fluxes of atmospheric leptons, which are discussed in [22].
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CHAPTER 6. Analysis
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Figure 6.9: Comparison of the unfolded spectra between the Sibyll 2.1 (nominal), Sibyll 2.3,
QGSJet-II-04, and EPOS-LHC hadronic interaction models.
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6.4 Discussion & Future Prospects

We observe the light mass group spectrum is softer than that of the heavier mass group, which

follows a power-law like structure with a spectral index of ∼ 2.7 throughout the entire energy range

considered. The transition from a primarily light to heavy-dominant spectrum takes place near

log10(E/GeV) = 7.1. This is qualitatively consistent with the findings of a separate IceCube four

mass group spectrum measurement [67], recent results from KASCADE-Grande [68], and the H4a

spectrum model [69] which are shown in Figures 6.10, 6.11, and 6.12, respectively.

Figure 6.10: Comparison with a four mass group IceCube analysis. The four mass groups are
modeled by proton, helium, oxygen, and iron air showers, respectively. For comparison with this
work, the proton and helium mass groups have been combined into an effective “light” group, while
the oxygen and iron mass groups have been combined to form a “heavy” mass group.

There is ongoing work within the IceCube collaboration to help further improve the mass-

separated spectrum measurement presented in this work. One of the primary paths to improve the

composition classification performance is to incorporate an IceTop composition-sensitive feature.
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Figure 6.11: Comparison with a two mass group cosmic ray spectrum measurement by the
KASCADE-Grande experiment [68]. Note that statistical uncertainties for the KASCADE-Grande
measurement are shown in the figure, but are smaller than the marker size used.

One such feature, the IceTop air shower reconstruction β parameter (see Equation 3.6), correlates

with the stage of shower development and depends on both primary particle energy and mass.

However, this feature was not included in this work as there is currently poor data-MC agreement

for this parameter and efforts are currently being devoted to resolve this issue. Additionally, a

log-likelihood ratio which depends on the muon content at ground level has been developed and

successfully used for discriminating gamma ray showers from cosmic ray showers using IceTop [70].

Such a feature could, in principle, be used to help discriminate between cosmic rays of different

masses. Lastly, with the availability of high-energy simulation datasets the work presented here

could be extended to higher energies. This would allow for further comparison with the KASCADE-

Grande result in which a softening in the energy spectrum for heavier cosmic rays was observed.
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Figure 6.12: Comparison with the H4a cosmic-ray spectrum model [69].
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Chapter 7

Energy Spectrum Anisotropy

Equipped with the ability to make light, heavy, and all-particle energy distributions, we can now

being to examine the spectrum at different parts of the sky. This chapter presents a search for

spectral variations in the light, heavy, and all-particle energy spectrum as a function of arrival

direction. We begin by discussing the time and coordinate systems used to define astronomical

arrival directions for detected events. Then the analysis method is outlined and corresponding

results shown. The chapter ends with an outline of future work and extensions for this analysis.
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7.1 Time and Coordinate systems

This work uses the Modified Julian Date (MJD) convention for event times. Based on the histor-

ically used Julian Date (JD), the number of days since noon on January 1, 4713 BC, the MJD

convention is defined to be:

MJD = JD− 2400000.5 (7.1)

This definition has the effect of shifting the zero point time for the MJD system to be midnight

on November 17, 1858. As an example, 9:00 AM CDT on April 26, 2019 has an MJD time of

58599.375.

Astronomical directions for each event detected by IceCube are described using the equatorial

coordinate system, which is depicted in Figure 7.1. The equatorial coordinate system, which is a

geocentric, fixed-sky spherical coordinate system, is described in terms of two angular coordinates:

right ascension α and declination δ. The right ascension coordinate, sometimes abbreviated as RA,

for a point on the celestial sphere is defined to be the angular distance, measured counterclockwise

along the celestial equator, from the vernal equinox to the hour circle that passes through the point.

Right ascension values range from 0◦ ≤ α < 360◦. Declination is the angular distance from the

celestial equator to the point on the celestial sphere as measured along the hour circle containing

the point. Declination angles cover −90◦ ≤ δ ≤ 90◦.

An event with local zenith and azimuth coordinates (θ, φ) detected at MJD time t can be

described in terms of right ascension and declination coordinates (α, δ). Due to IceCube’s loca-

tion at the South Pole, the transformation between local and equatorial coordinates is relatively

straightforward. The declination for an event is time-independent and strictly a function of the

zenith angle:

δ = θ − 90◦ (7.2)

In contrast, the right ascension coordinate for an event is time-dependent and determined from the

azimuth angle φ

α = ts − φ− 90◦ (7.3)
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5.1 Binning the Overhead Sky

As described in chapters 3 and 4, reconstructed cosmic ray air shower events possess a local arrival

direction defined by the pair (�, ✓). Including the Greenwich Mean Sidereal Time (GMST) of an event,

we can assign an arrival direction relative to the fixed stars, using the equatorial coordinate system. The

quantities defining this system are the right ascension (↵) and the declination (�), as shown in figure 5.1.

Using the HEALPix [74] spherical pixelation scheme, the ↵ and � are binned as equal-area pixels, providing

a method to project the numbers of observed events onto the visible celestial sky, i.e. the data map.

In a HEALPix map, the unit sphere is divided into twelve equal-area tessellations, each divided into an

Nside⇥Nside grid, giving a total of 12N2
side pixels. For the maps in this thesis, Nside was chosen to be 512 so

each pixel occupies an angular size of 0.11 sr. As will be shown, upon normalizing the observed data map to

the expected background map, we can make further inferences regarding the underlying cosmic ray arrival

distributions.

Figure 5.1: Diagram of the equatorial coordinate system. The defining quantities are the spherical coordi-

nates in the fixed-sky system, represented by right ascension and declination. Equatorial coordinates are

aligned with Earth’s rotational axis, with the Equator serving as the origin for declination. Thus, the north-

ern and southern poles are where � = 90� and � = �90�, respectively. The right ascension increases opposite

the rotation of the Earth, and its origin is defined as the vernal equinox, where the Sun crosses the celestial

equator. Source: MEMIM Encyclopedia.

Figure 7.1: The equatorial coordinate system is a geocentric, fixed-sky spherical coordinate system
described by two angular coordinates: right ascension α and declination δ. The right ascension α
and declination δ for the yellow marker in the illustration are indicated by the angular distance
spanned by the red arrows. Figure from [71].

where ts is given by

ts = 280.46061837 + 1.31850007701× 107 T + 3.87933× 10−4 T 2 − 2.58331181× 10−8 T 3 (7.4)

and T is defined as

T =
MJD− 51544.5

36525
(7.5)
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7.2 Analysis Method

The analysis method presented here was adapted from the method presented in [28]. The Hierar-

chical Equal-Area isoLatitude Pixelization (HEALPix) pixelation scheme [72] is used to partition

the equatorial coordinate system into equal area pixels on the sky. In this scheme, the number of

pixels in the map, npix, is expressed as npix = 12n2
side, where nside is constrained to nside = 2r for

an integer r between 0 and 10. For this work, we use nside = 128, which corresponds to pixel area

of 6.39× 10−5 sr or 0.2098 square degrees. The arrival direction distribution of all detected events

in equatorial coordinates is shown in Figure 7.2.

Figure 7.2: Event arrival direction distribution in equatorial coordinates.

To calculate the local deviation in the energy spectrum for a given position on the sky, the

spectrum is compared between events in two regions: the on region and the off region. The on

region is defined to be centered about the chosen point on the sky and bounded by lines of constant

right ascension and declination. The bounding region is the portion of the sky that lies ±5◦ in
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Figure 7.3: Example on and off regions, both shown in equatorial coordinates. The on region is
centered at (α, δ) = (132◦,−70◦) and has a width of 10◦ in declination. The off region consists of
points in the sky that are not contained in the on region but are within the same declination range
as the on region.

declination and ±5◦/ cos δ in right ascension about the central point. The factor of cos δ, where δ is

the declination of the center of the on region, ensures an equal area on region throughout different

locations on the sky. The size of the on region was chosen to provide sufficient data statistics to

measure spectrum differences with precision, however there are future plans to further optimize

this decision. The associated off region is defined to be the surrounding declination band which

contains the on region. Figure 7.3 shows the sky map for events that lie in an example on region

centered about (α, δ) = (132◦,−70◦) and the corresponding declination band off region.

Two energy histograms can then be constructed, one using events that lie within the on region

and another for the off region events. In general, the off region will cover a larger portion of the sky

and thus contain more events than the corresponding on region. In order to perform a comparison

between the shape of the two distributions on equal footing, the energy distribution for the off

region is scaled, or normalized, such that it matches the same total number of events as the on

region. That is, the number of events in each bin for the off region energy histogram is scaled by

the factor non/noff, where non and noff are the total number of events contained in the on and off

regions, respectively. Figure 7.4 shows the normalized energy histograms for the example on and
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Figure 7.4: Energy distributions for the example on and off regions shown in Figure 7.3. The off
region’s energy distributions have been normalized such that they contain the same total number
of events as the corresponding on region. The shaded bands for the on and off region distribution
indicate the ±1σ statistical uncertainties for the respective distribution.

off regions shown in Figure 7.3.

To quantify how much the on and off region energy distribution deviate from one another, a χ2

is calculated between the two distributions:

χ2 =
∑

i=1

(Non,i −Noff,i)
2

σ2
on,i + σ2

off,i

(7.6)

where Non,i and Noff,i are the number of counts in the i-th energy bin for the on and off region

histograms, respectively, after normalizing the off region counts distribution. Standard Poisson

counting error are assumed for σ2
on,i = Non,i and σ2

off,i = Noff,i, where statistical uncertainties are

propagated through the off region normalization. Note that the power of this method is that it

is concerned with only relative difference between energy distributions. This makes it robust to

systematic variations which impact the on and off regions in the same manner.
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7.3 Results

The analysis procedure outlined in the previous section can be repeated many times, each time

centering an on region about a different pixel in the sky map. In this manner a map of observed

spectrum deviation χ2 values as a function of arrival direction can be built. Here, we restrict to

possible declination values between δmin = −85◦ and δmax = −65◦. This restriction is to avoid edge

effects at both the equatorial pole, where rectangular on regions extend over the pole, and near the

edge of our detector acceptance where there are not sufficient event statistics to produce energy

spectra at the highest energies. The resulting χ2 maps for the light, heavy, and all-particle energy

distribution deviations are shown in Figure 7.6.

The observed chi-squared values follow a χ2 distribution with the expected number of degrees of

freedom, one less the number of energy bins due to the off region normalization constraint, as shown

in Figure 7.5. This allows us to assign a p-value for each observed χ2 value by using the cumulative

distribution function for the underlying χ2 distribution. Likewise, it is a common practice to further

convert p-values to a significance. The significance, in units of number of standard deviations, is

given by s =
√

2 erf−1(1− p) where erf(x) is the error function erf(x) = 2/
√
π
∫ x

0 exp(−t2)dt [73].

Significance sky maps are displayed in Figure 7.7. Table 7.1 shows the maximum pre-trial

p-value and significance values for all the light, heavy, all-particle spectra. The most significant

is the light spectra with a pre-trial significance of 3.98σ, but in all cases we need to determine a

post-trial significance.

Spectrum Light Heavy Total

Significance 3.98σ 3.32σ 3.29σ

p-value 6.9× 10−5 9.0× 10−4 1.0× 10−3

Table 7.1: Pre-trial spectrum deviation significance and p-values.
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Figure 7.5: Observed chi-squared distribution for the light energy spectrum which has been normal-
ized such that the area is one. A χ2 probability density function (PDF) with 17 degrees of freedom
is shown by the green curve. The observed chi-squared distribution is well described by the χ2

PDF. There is a similarly good level of agreement between the observed heavy and all-particle
chi-squared distributions and the corresponding χ2 PDFs.
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(a) Light mass group (b) Heavy mass group

(c) All-particle

Figure 7.6: Sky map of observed χ2 deviations for the light, heavy, and all-particle energy spectra.
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(a) Light mass group (b) Heavy mass group

(c) All-particle

Figure 7.7: Significance distributions for light, heavy, and all-particle energy spectrum deviations.
The maximum significance deviation is indicated with the white “X” marker.
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7.3.1 Post-trial Significance

To study anisotropies in our dataset, we must first have a detailed understanding of how our detector

responds to an isotropic flux of cosmic rays. Anisotropies in the arrival direction distribution can

originate from either variations in detector acceptance or from astrophysical origins. Due to both

the flat geometry and hexagonal design of the IceCube Observatory, the detected rate of cosmic

rays is a strong function of event arrival direction. Figure 7.8 shows the distribution of zenith θ

and azimuth φ coordinates for the events in our dataset.

Figure 7.8: Distribution of zenith θ and azimuth φ coordinates for detected events. The flat
geometry and hexagonal design of IceCube give rise to a strong event arrival direction dependence
for the detector acceptance. In addition, a large scale azimuth anisotropy originates from variable
snow heights atop the IceTop tanks.

To study anisotropies involving cosmic-ray arrival directions, it’s crucial to estimate the detector

response to an isotropic incident flux of cosmic rays. This is accomplished by using the well-

known time scrambling method presented in [74]. This data-driven algorithm takes as input a

dataset of local arrival coordinates and times {θ, φ, t} and produces an output dataset of modified

local coordinates that are an estimate of the exposure-weighted detector response to an isotropic

flux. It does this by keeping the detector (θ, φ) coordinates for each event fixed, while randomly

rearranging the detected times (hence the “time scrambling” name). By randomly sampling from

the measured times without replacement, we are able to keep track of gaps in data acquisition. From

the discussion in Section 7.1, time scrambling has the effect of randomizing the arrival direction

distribution in right ascension, while maintaining the characteristic non-uniformities in detector
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coordinates. This decouples the anisotropies in the local and equatorial coordinate systems.

To compute a post-trial significance for the observed spectral deviations shown in Figure 7.7,

the time scrambling algorithm was used to produce 2,000 randomized datasets. The same analysis

method was then applied to produce a maximum spectrum deviation significance for each ran-

domized trial. The distribution of pre-trial significance values, along with the observed pre-trial

significance, for the light, heavy, and all-particle deviations, is shown in Figure 7.9. Post-trial

p-values are calculated by comparing the observed pre-trial significance to the corresponding dis-

tribution for the scrambled trials. The resulting post-trial p-values are 0.51, 0.90, and 0.85 for

the light, heavy, and all-particle spectra, respectively, which are consistent with the background

expectation.

Spectrum Light Heavy Total

Significance 0.66σ 0.13σ 0.19σ

p-value 0.51 0.90 0.85

Table 7.2: Post-trial spectrum deviation significance and p-values.
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(a) Light (b) Heavy

(c) All-particle

Figure 7.9: Significance distributions for time scrambled light, heavy, and all-particle energy spec-
trum deviations.
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7.4 Future Work

While we have shown the post-trial significance of the spectrum anisotropy analyses in this work,

future studies can be done to interpret the results of our analysis as a limit on spectral variations.

To do so we must choose a particular hypothesis to test. Generally speaking, any model which

parameterizes the observed energy distributions could be used. However, for simplicity of the

discussion here we will consider the case of a single power law.

The steps for setting a limit on the spectral index range this analysis method is sensitive to

are outlined in what follows. First, a power law model can be fit to the unfolded off region energy

spectrum for the maximum pre-trial significance location on the sky map (Figure 7.7). This fitted

index γref, serves as the reference expected spectral index for the off region. Next, we inject the

reference spectrum plus a small deviation ε, i.e a power law spectrum with γinj = γref + ε where ε

is a deviation parameter that can be varied. The injection is done by forward-folding the injected

spectrum through the response matrix to produce an observed counts distribution in the on region.

This counts distribution represents the average observed detector response to the true injected

spectrum with index γinj. We can then generate many randomized realizations of this response by

adding Poisson fluctuations about the average distribution. For each of these randomized trials,

we can determine the deviation relative to the background off region and compute a pre-trial

significance. This allows us to build up a distribution of pre-trial significance values similar to

those seen in Figure 7.9. The value for the index deviation parameter ε can be adjusted, resulting

in a shift of the significance distribution for the trials, until a specified confidence level for the post-

trial significance is reached. In this manner we can set a limit on the range of possible spectral

deviations allowed by our measurement.

In addition, the same method used to generate our current limits can also be used to study

how the sensitivity of this analysis changes as a function of the number of energy bins, size of on

region, etc. This allows us to tune these parameters such that the analysis sensitivity is optimized.

In the future we plan to do these studies and apply the optimizations to additional years of data.

Lastly, a variation of this analysis which uses non-coincident events detected only by IceTop

could prove fruitful. The IceTop air shower reconstruction will still provide the energy proxy S125
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and local arrival direction θ and φ with a comparable performance to what is achieved in this

work. Mass information, however, will be lost due to the lack of a composition-sensitive IceTop

parameter. Thus this type of analysis would be restricted to studying variation in only the all-

particle spectrum. The added benefit in this case is the ability to extend the available field of view

to declinations just under −30◦ while also increasing the detected event rate.
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Chapter 8

Conclusions

The results of a composition-resolved cosmic-ray energy spectrum analysis at PeV energies using

one year of data collected by the IceCube Observatory has been reported. The analysis focused on

making a precise two mass group and all-particle energy spectrum measurement in the range from

6.4 ≤ log10(E/GeV) ≤ 7.8. The resultant unfolded energy spectra are shown in Figure 6.4, 6.6,

and 6.9. We observed the light mass group spectrum is softer than that of the heavier mass group,

which follows a power-law like structure with a spectral index of ∼ 2.7 throughout the entire energy

range considered. The transition from a primarily light to heavy-dominant spectrum takes place

near log10(E/GeV) = 7.1. This feature is characteristic of a potential rigidity-dependent cutoff, or

Peters cycle. The change in relative mass abundances could also indicate a possible transition in

the source population of cosmic rays.

The impact of systematic uncertainties introduced by the unfolding method, detector-related

uncertainties, and choice of hadronic interaction model were also considered, with their effects

summarized in Tables 6.1, 6.2, and 6.3. There is work in progress to reduce the uncertainty

introduced by the modeling of photon scattering and absorption properties in ice. Furthermore,

improvements to the modeling of hadronic interactions is an ongoing effort in both the particle

and cosmic-ray physics communities. Both these sources of systematic uncertainty are expected to

decrease over time.

Additionally, a study of how the light, heavy, and all-particle energy spectra deviate with arrival



112

direction was presented. This marks the first time an analysis of this kind has been conducted using

the IceCube Observatory. No statistically significant spectrum deviations above the background

expectation were observed. The results from this analysis can be used to set a limit on the range

of possible spectral deviations. Moreover, a potential future version of the analysis presented here,

in which non-coincident events detected by IceTop are used to study variations in the all-particle

energy spectrum as a function of arrival direction over a larger field-of-view, could prove valuable.



113

Appendix A

Energy Spectrum Results

log10(E/GeV) J(E) [GeV−1m−2sr−1s−1] sysMC stat

6.4-6.5 2.004174e-13 2.207437e-14 3.586689e-16

6.5-6.6 1.127214e-13 1.187095e-14 2.453493e-16

6.6-6.7 5.535148e-14 5.781579e-15 1.533415e-16

6.7-6.8 2.549952e-14 2.593787e-15 9.254202e-17

6.8-6.9 1.361629e-14 1.241593e-15 6.371099e-17

6.9-7.0 6.097723e-15 5.437453e-16 3.801573e-17

7.0-7.1 3.103432e-15 2.553750e-16 2.425460e-17

7.1-7.2 1.491378e-15 1.274732e-16 1.493259e-17

7.2-7.3 6.945824e-16 6.409421e-17 8.896504e-18

7.3-7.4 3.417182e-16 3.436946e-17 5.548250e-18

7.4-7.5 1.861383e-16 1.976928e-17 3.605669e-18

7.5-7.6 8.687299e-17 1.024688e-17 2.180406e-18

7.6-7.7 4.994470e-17 5.932316e-18 1.384380e-18

7.7-7.8 2.072837e-17 3.036319e-18 8.117396e-19

Table A.1: Values of the all-particle cosmic-ray energy spectrum for 6.4 ≤ log10(E/GeV) ≤ 7.8
including uncertainties. The label “stat” represents the statistical uncertainties, “sysMC” is for the
uncertainties from the Monte Carlo.
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log10(E/GeV) J(E) [GeV−1m−2sr−1s−1] sysMC stat

6.4-6.5 1.250859e-13 1.789549e-14 2.823013e-16

6.5-6.6 6.871850e-14 9.455609e-15 1.915450e-16

6.6-6.7 3.517916e-14 4.728827e-15 1.212248e-16

6.7-6.8 1.601216e-14 2.148505e-15 7.361451e-17

6.8-6.9 7.533558e-15 9.588045e-16 4.683935e-17

6.9-7.0 3.480464e-15 4.274985e-16 2.865391e-17

7.0-7.1 1.688323e-15 1.897800e-16 1.788149e-17

7.1-7.2 7.359461e-16 8.892008e-17 1.045739e-17

7.2-7.3 2.909240e-16 3.932831e-17 5.600456e-18

7.3-7.4 1.155397e-16 1.897893e-17 3.309873e-18

7.4-7.5 6.214693e-17 1.064254e-17 2.153398e-18

7.5-7.6 2.967825e-17 5.594519e-18 1.315054e-18

7.6-7.7 1.004167e-17 2.409821e-18 6.287926e-19

7.7-7.8 3.716937e-18 1.101231e-18 3.335798e-19

Table A.2: Values of the light cosmic-ray mass group energy spectrum for 6.4 ≤ log10(E/GeV) ≤ 7.8
including uncertainties. The label “stat” represents the statistical uncertainties, “sysMC” is for the
uncertainties from the Monte Carlo.
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log10(E/GeV) J(E) [GeV−1m−2sr−1s−1] sysMC stat

6.4-6.5 7.533151e-14 1.292396e-14 2.208611e-16

6.5-6.6 4.400294e-14 7.177102e-15 1.531416e-16

6.6-6.7 2.017232e-14 3.326385e-15 9.383709e-17

6.7-6.8 9.487359e-15 1.453154e-15 5.605526e-17

6.8-6.9 6.082731e-15 7.888254e-16 4.317800e-17

6.9-7.0 2.617258e-15 3.360117e-16 2.497970e-17

7.0-7.1 1.415109e-15 1.708797e-16 1.638581e-17

7.1-7.2 7.554321e-16 9.133800e-17 1.065905e-17

7.2-7.3 4.036584e-16 5.060978e-17 6.912348e-18

7.3-7.4 2.261785e-16 2.865413e-17 4.452791e-18

7.4-7.5 1.239914e-16 1.666014e-17 2.891987e-18

7.5-7.6 5.719474e-17 8.584862e-18 1.739187e-18

7.6-7.7 3.990303e-17 5.420805e-18 1.233337e-18

7.7-7.8 1.701143e-17 2.829580e-18 7.400301e-19

Table A.3: Values of the heavy cosmic-ray mass group energy spectrum for 6.4 ≤ log10(E/GeV) ≤
7.8 including uncertainties. The label “stat” represents the statistical uncertainties, “sysMC” is for
the uncertainties from the Monte Carlo.
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Appendix B

Unfolding Validation

The iterative unfolding algorithm presented in Chapter 5, being based on Bayes’ theorem, requires

the specification of a prior distribution. The choice of prior is a free parameter in the algorithm

and acts as the seed, or starting point, for unfolding iterations.

Ideally, the choice of a prior distribution should affect the final unfolded distribution minimally.

For example, in the case where two priors are tested, one which is close to the true underlying

distribution and one which differs substantially from the true distribution, the desired behavior is

for both to converge to the same final unfolded distribution. However, the case in which the prior

distribution varies from the true distribution may take more unfolding iterations to converge and

result in larger uncertainties in the unfolded distribution.

This appendix presents the results from investigating what effect the choice of prior has on this

analysis in two ways: by unfolding the observed data distribution using several different choices of

prior and by injecting known simulated spectra and unfolding with different priors.
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B.1 Unfolding Data

As discussed in Section 6.2, we have chosen to use the Jeffreys prior in this work to avoid any a

priori assumptions about the spectra. However, one should always ensure that other choices of

prior do not drastically influence the final unfolded distribution for a measurement. We compare

the results from using several priors to unfold our observed composition-energy counts distribution,

including uniform, Jeffreys, simple power law, and H3a/H4a [69] composition model priors. The

corresponding unfolded spectra are shown in Figure B.1. For ease of visual comparison, we only

show the systematic uncertainties due to finite response matrix Monte Carlo for the nominal Jeffreys

prior, as indicated by the shaded bands. However, each of the other choices of prior has uncertainty

of a comparable magnitude. We see that the final unfolded distributions for each of the choices of

prior is consistent with the nominal result using the Jeffreys prior, i.e. the unfolding procedure is

performing as expected.

Figure B.1: Unfolded light, heavy, and all-particle energy spectra for various choices of the unfolding
prior.
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B.2 Unfolding Injected Spectra

The previous validation check ensures that the unfolding process converges to the same final un-

folded distribution, irrespective of the prior. However, it does not check whether or not the unfolded

solution is consistent with the underlying true cause distribution. To test that this is in fact the

case, we weight Monte Carlo simulation to an assumed spectrum, pass this through the analysis pro-

cedure, and compare the resulting unfolded spectrum with the original, known injected spectrum.

Figures B.2 and B.3 show both the injected and corresponding unfolded flux for a composition-

dependent broken power law and the H4a spectrum model, respectively. In both these cases, as

well as with all other injected spectra considered, the final unfolded flux was consistent with the

injected flux within the unfolding uncertainties.

Figure B.2: Unfolded flux comparison for an injected broken power law composition assumption.
The injected flux is shown with dashed lines while the corresponding unfolded spectrum is repre-
sented by the solid histogram. Shaded bands indicate the uncertainty due to finite Monte Carlo
available to build the detector response matrix and the error bars show statistical errors.
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Figure B.3: Unfolded flux comparison for an injected H4a composition assumption. The injected
flux is shown with dashed lines while the corresponding unfolded spectrum is represented by the
solid histogram. Shaded bands indicate the uncertainty due to finite Monte Carlo available to build
the detector response matrix and the error bars show statistical errors.
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Appendix C

PyUnfold

As part of the work for this thesis, Zigfried Hampel-Arias and I developed PyUnfold, a Python

package for implementing iterative unfolding. The source code for PyUnfold is available on GitHub1

and the package has been published in the Journal of Open Source Software (JOSS) [58].

C.1 Why Another Package?

The primary motivating factor for creating PyUnfold was to provide an unfolding toolkit that’s ac-

cessible to members of all scientific disciplines in an easy-to-use package. While unfolding methods

are commonly used in scientific analysis in the high-energy physics (HEP) community, the deconvo-

lution packages used in HEP maintain a strong dependence on the ROOT data analysis framework

[75]. ROOT, while a very useful piece of software, is rarely used outside the HEP community.

Instead, PyUnfold is built on top of the Python scientific computing stack (i.e. NumPy, SciPy,

and pandas [76]), thus broadening its scope to a general scientific audience. PyUnfold has been

designed to be both easy to use for first-time users as well as flexible enough for fine-tuning an

analysis and testing the robustness of results.

1PyUnfold repository is available at https://github.com/jrbourbeau/pyunfold
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C.2 Features

PyUnfold provides support for the following features:

• Custom, user defined initial prior probability distributions, the default being the uniform

prior. The non-informative Jeffreys prior [56] is accessible as a utility function.

• Unfolding stopping criteria based on test statistic calculations comparing unfolded distribu-

tions from one iteration to the next. These include Kolmogorov-Smirnov [77][78], χ2, relative

difference, and Bayes factor [79] tests.

• Tunable spline regularization as a means of ensuring that unfolded distributions do not suffer

from growing fluctuations potentially arising from the finite binning of the response matrix.

• Option to choose between Poisson or multinomial forms of the covariance matrices for both

the data and response contributions to the uncertainty calculation.

• Multivariate unfolding via definitions of subsets of causes, which are regularized in their

respective blocks or groups.

Further mathematical details regarding the iterative unfolding procedure, including complete deriva-

tions of the statistical and systematic uncertainty propagation, can be found in the online docu-

mentation.
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C.3 Example Usage

from pyunfold import iterative_unfold

# Observed distributions

data = [100, 150]

data_err = [10, 12.2]

# Response matrix

response = [[0.9, 0.1],

[0.1, 0.9]]

response_err = [[0.01, 0.01],

[0.01, 0.01]]

# Detection efficiencies

efficiencies = [1, 1]

efficiencies_err = [0.01, 0.01]

# Perform iterative unfolding

unfolded_result = iterative_unfold(data=data,

data_err=data_err,

response=response,

response_err=response_err,

efficiencies=efficiencies,

efficiencies_err=efficiencies_err)
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Appendix D

Distributed Electronic Cosmic-Ray

Observatory

This appendix provides an overview of the work presented in Particle Identification In Camera

Image Sensors Using Computer Vision [80]. Please see the publication for full details.

D.1 The DECO Application

The Distributed Electronic Cosmic-ray Observatory (DECO) is a global network of smartphones

that use an Android application developed to detect ionizing radiation using smartphone camera

image sensors. The DECO application was released publicly in September 2014 and, as of December

2017, has been deployed on every continent in 80 different countries. Figure D.1 shows a world

map of DECO data taking locations.

As energetic charged particles pass through a phone’s image sensor, electron-hole pairs are

created and detected by the sensor. The DECO app takes long-duration exposures (∼50 ms)

and then applies onboard filtering to tag potentially interesting images as “events”. Tagged event

images, along with additional metadata, are then uploaded to a centralized database for further

offline analysis.
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Figure D.1: World map showing the global network of DECO users. Dots indicate data taking
locations and span 80 different countries. Every continent including Antarctica is represented.
Lines of data points, such as those in Antarctica and west of the Americas, indicate users running
DECO on plane flights. The map is plotted with a Kavrayskiy VII projection and with data
collected as of December 2017. Figure from [80].

D.2 Event Types

There are three different types of charged particle events that DECO observes: tracks, worms, and

spots. These different categories of events are characterized by their morphology, as described in

Table D.1.

Event type Morphology Description

Track Long, straight clusters of pixels in an image created by high-
energy (GeV) minimum-ionizing cosmic rays

Worm Curved clusters of pixels caused by the meandering paths of
electrons that have undergone multiple Coulomb scattering
interactions. Most likely created by photons from radioac-
tive decays which undergo Compton scattering and create
energetic electrons.

Spot Smaller, approximately circular clusters of pixels that can
be created by various interactions

Table D.1: DECO event type descriptions.

Figure D.2 shows a few representative examples for each event type. In addition to the three
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Tracks Worms Spots

Figure D.2: Representative sample of the three distinct types of charged particle events that require
classification. Tracks and spots, left and right columns, respectively, are generally observed to have
consistent and predictable features. Worms, middle two columns, are observed to have a much
wider variety of features, many of which present potential classification confusion when compared
to track-like and spot-like features. Each image above has been converted to grayscale and cropped
to 64× 64 pixels. Figure from [80].

particle interaction-related event types, there are non-particle induced events in the DECO dataset

as well. These events, called noise events, arise from camera sensor hot spots, thermal noise

fluctuations, and large-scale sensor artifacts such as entire rows of illuminated pixels. While noise

events aren’t particularly interesting from an analysis point of view, they do act as a potential

source of misidentification for the particle events and need to be accounted for when developing an

event classification model.

In order to train an image classification model, sufficient training data is required. Due to

the current lack of Monte Carlo event simulation, we chose to construct a human labeled dataset
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for training. Labeling the entire DECO dataset (∼45,000 event images) by hand would be a very

laborious, and unnecessary, task. Instead, we opted to label 5119 images in total, of which there

are 2520 (49%) noise, 1094 (21%) spot, 1063 (21%) worm, and 442 (9%) track images (see Figure

D.3).
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Figure 6: Number of training images for each event type contained in
the final dataset that was used to train the best performing model. Out
of the 5119 total images, there are 2520 (49%) noise, 1094 (21%) spot,
1063 (21%) worm, and 442 (9%) track images.

to introduce scale-jittering via data augmentation, which is in
widespread practice today [38, 39]. Data augmentation con-
sists of randomly transforming training images while preserv-
ing their human-assigned category labels. Similar to scale in-
variance, data augmentation can also be used to learn rotation
invariance. While rotation-invariant CNN architectures exist
[31] and have been shown to outperform data augmentation in
certain cases [40], the small number of training images in this
study prohibited the use of such methods. Finally, due to the
limited number of training images available, data augmentation
was also used to artificially inflate the number of “unique” im-
ages seen by the model during training.

In general, data augmentation has been shown to be the sim-
plest way to achieve approximate invariance to a given set of
transformations [27]. Assuming the model has the capacity to
do so (i.e., enough feature maps), the model should be able to
learn a wide variety of invariances directly from the data [41].
An additional benefit of data augmentation is that a single set
of transformations can be used to address multiple di↵erent is-
sues. With that in mind, the following operations were applied
to each training image:

• grayscale conversion and normalization: a dimensional
reduction over the channel axis of each image was per-
formed by calculating an unweighted sum of each pixel’s
R+G+B value. The resulting grayscale images were then
normalized to 1, taking the maximum possible R+G+B
value to be 765 (i.e., 255⇥3). Grayscale reduces the varia-
tion seen from phone to phone and is also computationally
more e�cient. Furthermore, while color provides essential
information for other image classification tasks, it does not
for particle tracks.

• translation: random left/right and up/down shifts, each by
an integer number of pixels uniformly sampled between -8
and +8 with respect to the image center.

• rescale: random zoom in/out uniformly sampled between

90% and 110% of the original image size, used for learn-
ing scaling invariance.

• reflection: random horizontal and vertical reflections,
each with a probability of 50%.

• rotation: random rotation uniformly sampled between 0�

and 360�; used for learning rotation invariance. After the
rotation, any remaining pixels outside the boundaries of
the original input were assigned a value of 0.

• crop: crop from 100⇥100 pixels to 64⇥64 pixels; used to
reduce the amount of empty space created on the bound-
aries of the image as a result of rotation, translation, and
rescaling.

With the exception of normalization and the conversion to
grayscale, which could be performed ahead of time, all data
augmentation was done in real time during the training process.
Prior to the start of each training epoch (full cycle through all
training images, as defined in Section 3.1), a new random set
of perturbations are applied to each image. Applying data aug-
mentation in this way ensures that the model is never presented
with the exact same version of a training example more than
once. Real-time data augmentation is performed in Python us-
ing the Keras neural network application programming inter-
face [42], which makes use of tools contained within the SciPy
library [43].

4.3. Avoiding Overfitting Through Regularization
Deep neural networks typically have anywhere from tens of

thousands to tens of millions of trainable parameters. The ad-
vantage of such a large number of parameters is that the model
has the ability to fit extremely complex and diverse datasets.
However, the downside of a model with such tremendous free-
dom is that there is considerable risk of over-fitting, which oc-
curs when the model simply memorizes the training images.
As a result, the model is overly sensitive to the specific features
that were memorized during training and therefore generalizes
poorly to new data. Over-fitting is of particular concern when
dealing with a small number of training images, as is the case
in this study. To combat this phenomenon, we used several reg-
ularization techniques [20, 44], which are modifications to the
learning process that are intended to reduce generalization error
while leaving training error9 una↵ected. These techniques are
as follows:

• data augmentation: artificially increasing the number of
training examples by modifying the images in such a way
that they look di↵erent for each particular training instance
while still maintaining the correctness of the underlying
human assigned label. The particular perturbations used
are outline in Section 4.2.

• label smoothing: accounting for the uncertainty in human
assigned labels by replacing the hard 0, 1 (false, true) label
distribution, q(k|x) = �ky, with q(k|x) = (1 � ✏)�ky +

✏
K ,

9The error between the true and predicted classification for images in the
training set

7

Figure D.3: Number of training images for each event type that was used to train the best per-
forming model. Out of the 5119 total images, there are 2520 (49%) noise, 1094 (21%) spot, 1063
(2%) worm, and 442 (9%) track images. Figure from [80].

D.3 Particle Identification Model

A convolutional neural network (CNN) was constructed and trained with our labeled dataset to

identify event images by their event category (track, worm, spot, or noise). The model architecture,

specified in Table D.2, is loosely based on the VGG-16 network [81] and consists of several sequential

convolution/max pooling units for feature extraction which feeds into a fully connected network

for classification. To build and train our CNN model, we used the Keras Python neural network

framework [82].

In order to both avoid overfitting and build scale and rotational invariance into our model pre-

dictions, we used several data augmentation techniques during the training procedure. Specifically,
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Layer Features Size Activation Dropout

1 Convolution 64 3× 3 Leaky ReLU -
2 Convolution 64 3× 3 Leaky ReLU -
3 Max Pooling - 2× 2 - 0.2
4 Convolution 128 3× 3 Leaky ReLU -
5 Convolution 128 3× 3 Leaky ReLU -
6 Max Pooling - 2× 2 - 0.2
7 Convolution 256 3× 3 Leaky ReLU -
8 Convolution 256 3× 3 Leaky ReLU -
9 Max Pooling - 2× 2 - 0.2
10 Convolution 512 3× 3 Leaky ReLU -
11 Convolution 512 3× 3 Leaky ReLU -
12 Max Pooling - 2× 2 - 0.2
9 Dense 2048 - Leaky ReLU 0.4
10 Dense 2048 - Leaky ReLU 0.4
11 Dense 4 - softmax -

Table D.2: Layer-by-layer summary of the best performing network. Each layer name is given
followed by the number of feature maps (convolutional layers) or neurons (dense layers), the size
of the convolutional filter or pooling region, the activation function used, and, lastly, the dropout
probability applied. For the leaky ReLU activation function, the value of α was set to 0.3 in all
cases. A max-norm constraint of 3 was used for both 2048 dense (fully connected) layers. Dropout
with a probability P = 0.2 was also applied to the input layer (not listed in the table). Table from
[80].

during each epoch of training, images were subjected to each of the following augmentations:

• Translation: Random left/right and up/down shifts, each by an integer number of pixels

uniformly sampled between -8 and +8 with respect to the image center.

• Rescale: Random zoom in/out uniformly sampled between 90% and 110% of the original

image size, used for learning scale invariance.

• Reflection: Random horizontal and vertical reflections, each with a probability of 50%.

• Rotation: Random rotation uniformly sampled between 0◦ and 360◦; used for learning ro-

tation invariance. After the rotation, any remaining pixels outside the boundaries of the

original input were assigned a value of 0.

• Crop: Crop from 100×100 pixels to 64×64 pixels; used to reduce the amount of empty space

created on the boundaries of the image as a result of rotation, translation, and rescaling.
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Input Feature Extraction Classification

Grayscale Image
100× 100× 1
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Figure D.4: Block diagram of the best performing network trained in this study. The input and
output dimensions for each operation are shown to the left and right of the arrows, respectively.
All convolutional filters are 3× 3 and all pooling operations are 2× 2 max pooling. Following the
fourth pooling layer, the feature maps are flattened to a single 1-dimensional vector of length 8196,
which is then used as input for the first dense layer. Figure from [80].

D.4 Model Performance

In order to assess the CNN model performance, a stratified 10-fold cross-validation method [83]

was used to estimate the quality of the model predictions on unseen data. A summary of the CNN

categorization accuracy is shown in Figure D.5. One distinctive feature of this confusion matrix

is a bias towards the relative occurrence of each category in the training set. To account for this

imbalance, Figure D.6 shows a normalized confusion matrix where each row is normalized by the

total number of human-labeled events for each category. From Figure D.6 we can see, for example,

the model correctly identifies human-labeled tracks 92% of the time, while incorrectly identifying

them as worms 9% of the time. This confusion in the classifier is both expected and comparable

to human performance, given that, out of the four categories in the model, track and worm event

morphologies are among the most similar.

D.5 Conclusions and Future Work

This classification algorithm has been integrated into the standard DECO processing pipeline and

the resulting classification of each event is available along with the event’s image and metadata

on the public web site1 within several hours of detection. The CNN classification can be used in

1https://wipac.wisc.edu/deco/data
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as using larger values of 0.1 and 0.01 all resulted in marginally
higher testing loss. We also tested an alternate, simpler version
of the model which is described in Section 5.3.

5.2. Model Accuracy

Figure 9 shows a category-by-category summary, known as
a confusion matrix, quantifying the error between human and
CNN classifications for each category in the model. Each
square of this confusion matrix is calculated by averaging the
testing set results over the 10 folds in the cross validation. It
should be noted that the resulting distribution is not normalized
and is biased according to the relative occurrence of each cat-
egory in the training set. For example, noise events make up
almost half of the training set (Figure 6). This bias can be
removed by normalizing each row of the confusion matrix to
the total counts contained in each row, i.e. the total number
of human-labeled events for each category. The resulting row-
normalized confusion matrix describes the conditional CNN
probability distributions for each of the four human-assigned
labels in the model. The probability of the CNN correctly
identifying each event type, along with the probability of mis-
identifying each category, can be read directly o↵ of the row-
normalized confusion matrix in Figure 10. For example, the
model correctly identifies human-labeled tracks as tracks 92%
of the time, while incorrectly identifying them as worms 9%
of the time. This confusion in the classifier is both expected
and comparable to human performance, given that, out of the
four categories in the model, track and worm event morpholo-
gies are among the most similar. The model accurately labels
noise events 97% of the time, which is the highest accuracy
of any event type. This is also expected due to the vast dif-
ferences between charged particle events and noise. Moreover,
this also confirms that the model successfully learned the con-
cept of noise, justifying the inclusion of this category in the
model.

These results assume that a single classification is assigned
to each image by choosing the category with the highest CNN
output probability. We explore the performance of alternative
choices below.

We further evaluate the model’s classification performance
by calculating the true and false positive rates for each cate-
gory, assuming a binary classification scheme (e.g. track and
non-track). The true and false positive rates for each category
are parameterized according to a threshold applied to its CNN
output probability and plotted as a receiver operating character-
istic (ROC) curve, as seen in the top panel of Figure 11. For
example, requiring a track probability of at least 0.9 results in
a true positive rate of 60% and a false positive rate of 0.3%.
While the trade-o↵ between e�ciency and purity11 can be in-
ferred from the ROC curve, these quantities were also explicitly
calculated for tracks, which is the primary category of interest
for most DECO users. The resulting e�ciency, purity, and e�-
ciency ⇥ purity curves, averaged over the 10 folds and plotted

11The definitions of purity and e�ciency used here are generally referred to
as precision and recall, respectively, within the machine learning community.
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Figure 9: Confusion matrix summarizing the CNN categorization ac-
curacy. The vertical axis shows the ground truth (human-determined)
classification and the horizontal axis shows the classification from the
CNN. The values shown in the confusion matrix are the average and
standard deviation of the testing set results from the 10-fold cross val-
idation.

as a function of track probability threshold, are shown in the
bottom panel of Figure 11. For a given fold and threshold, the
e�ciency is calculated from the testing set and defined to be the
ratio of the number of tracks that pass the threshold to the total
number of tracks. Likewise, for a given fold and correspond-
ing test set, the purity is defined as the ratio of the number of
human-labeled tracks that pass the threshold to the total number
of events, regardless of event type, that pass the threshold. The
product of the resulting curves is one metric that can be used
to determine a threshold value that balances the e�ciency vs.
purity trade-o↵.

5.3. Comparison With Simpler Model

In the previous sections, we have shown that the model ex-
hibits excellent performance across all four categories when
classifying unseen data. However, one might wonder if the
complexity of our model, which contains 25 million trainable
parameters, is necessary to achieve this level of performance.
In order to test this, we trained a simpler version of the model,
containing 140 thousand parameters, with the same e↵orts de-
scribed in Sections 4.2 and 4.3. The simpler model contained
only two blocks of convolutional and pooling layers, followed
by significantly smaller dense layers than those described in
Section 4.4. The performance of this model was evaluated us-
ing the same 10-fold cross-validation described in Section 5.1.
Compared to our more complex model, the simple model was
equally accurate when classifying spots and noise, but 17% less
accurate at classifying worms and 7% less accurate at classify-
ing tracks. Furthermore, when evaluating the track performance
in a binary fashion (see Section 5.2), a 0.8 track threshold cut
with the simple model resulted in a track sample with <80% pu-
rity and only 40% e�ciency. This suggests that a more complex

10

Figure D.5: Confusion matrix summarizing the CNN categorization accuracy. The vertical axis
shows the ground truth (human-determined) classification and the horizontal axis shows the clas-
sification from the CNN. The values shown in the confusion matrix are the average and standard
deviation of the testing set results from the 10-fold cross validation. Figure from [80].

queries, allowing users to select a sample of images of any particle identity, or multiple identities,

for analysis and outreach purposes.

In addition to improving the overall experience of DECO users, the new model opens the door for

new and improved analyses. For example, the model provides efficient rejection of the radioactive

background (i.e., worms), which is necessary to detect extensive air showers using DECO or a

similar application.



130

worm spot track noise

CNN label

w
or

m
sp

ot
tr

ac
k

n
oi

se

H
u

m
an

la
b

el

0.870 0.030 0.090 0.009

0.014 0.939 0.004 0.044

0.063 0.016 0.921 0.000

0.001 0.029 0.000 0.969

0.0

0.2

0.4

0.6

0.8

R
ow

-n
or

m
al

iz
ed

p
ro

b
ab

il
it

y

Figure D.6: Row-normalized confusion matrix that accounts for the relative imbalance in the
number of testing examples for each category in the training set. Normalization is performed
independently for each row and is calculated by dividing each row of the un-normalized confusion
matrix by the total number of events in that row. Figure from [80].
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Appendix E

Dark Matter Searches with a Mono-Z′

Jet

This appendix provides a brief highlight of the work presented in Dark Matter Searches with a

Mono-Z′ Jet [84]. Please see the publication for full details.

E.1 Introduction

After the discovery of the Higgs boson in 2012, searching for physics beyond the Standard Model

(SM) has become the highest priority at the Large Hadron Collider (LHC). One of the most

important new BSM particles is dark matter, whose existence has long been established from

astrophysical observations. In spite of a long history of searching for dark matter particles from

direct detection, indirect detection and accelerator-based experiments, there is still no clear evidence

for the particle nature of dark matter.

While many existing studies [85] [86] [87] have concentrated on identifying signals using the

initial state radiation (ISR) of partons inside an accelerated proton, less attention has been paid

to potential dark matter final state radiation (FSR). The basic process is that dark matter is pair

produced, after which one of the particles can radiate a dark Z′, as illustrated in Figure E.1. The

Z′ from FSR can decay back to SM particles and result in visible signals in a collider, while there

can still be substantial missing transverse momentum from the dark matter particles.
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p p

�̄

�Z 0

Figure 1: An illustrative Feynman diagram for the mono-Z 0 signature at hadron colliders. The Z 0

is mainly produced from dark matter final state radiation. For a GeV-scale Z 0 decaying to hadrons,
this gives a unique mono-Z 0 jet signature.

there can still be substantial missing transverse momentum from the dark matter particles.
Here we focus on the possibility that the dominant decay of the Z 0 is into quarks. When the Z 0

mass scale is light (GeV-scale), then there are two important effects we identify. First, the hadronic
decay of a boosted Z 0 gives a new collider signature: the Z 0 appears as a jet with a very narrow
cone of radiation and a small multiplicity of charged particles. We refer to these as Z 0-jets, and
show that these can be distinguished at high significance from QCD jets. Second, the rate for dark
matter FSR of Z 0 jets can be larger than the rate for ISR jets. Taking advantage of both effects,
we demonstrate that a dedicated collider analysis based on the mono-Z 0 signature will dramatically
improve our understanding of the dark matter interactions with visible particles.

In this paper, we categorize collider signatures with dark matter radiating its own force carrier,
for simplicity assumed to be a spin-one vector boson. We concentrate on an Abelian dark matter
sector, with a GeV-scale Z 0. Due to the kinematic constraints, the Z 0 will decay into only a few
hadrons. For the examples in our paper, the Z 0 will mainly decay into two or three mesons, of which
two are charged. By requiring large missing transverse momentum, the Z 0 particle is boosted and
the decay products are highly collimated. This mono-Z 0 jet can be differentiated from a QCD jet
using a jet substructure analysis.

Complementary work on radiation of heavier Z 0s and different decay channels can be found
in Refs. [41, 42]. For heavier Z 0s decaying hadronically, one can search for missing transverse
momentum plus a resonance in the invariant mass of the two jets to reduce the SM backgrounds. The
dilepton resonance plus missing transverse momentum signature probes Z 0s that decay leptonically.
We also note that a non-Abelian GeV-scale dark sector can naturally result in a cascade of gauge
bosons. The latter case has been studied in the context of lepton jets [43–47] as well as jets with
hadronic shower products that nevertheless could be distinguished from QCD jets [48–50].

2

Figure E.1: An illustrative diagram for the mono-Z′ signature at hadron colliders. The Z′ is mainly
produced from dark matter final state radiation. For a GeV-scale Z′ decaying to hadrons, this gives
a unique mono-Z′ jet signature.

We focus on the possibility that the dominant decay of the Z′ is into quarks. When the Z′ mass

scale is light (GeV-scale) there are two important effects to consider. First, the hadronic decay of

a boosted Z′ gives a new collider signature: the Z′ appears as a jet with a very narrow cone of

radiation and a small multiplicity of charged particles which is referred to as a Z′-jet. Second, the

rate for dark matter FSR of Z′ jets can be larger than the rate for ISR jets. Taking advantage of

both these effects, we demonstrate that a dedicated collider analysis based on the mono-Z′ signature

will dramatically improve our understanding of the dark matter interactions with visible particles.

E.2 Results

How dark matter is produced at colliders is model-dependent, but generically there are two possibil-

ities. The first possibility, which we call the “secluded dark Z′ model”, is that the SM particles are

charge-neutral under the dark U(1)′, but have additional interactions with dark matter particles.

The second possibility, which we call the “public dark Z′ model”, is to have some SM particles also

charged under the dark U(1)′ gauge symmetry.

In the secluded model schenerio we were able to set constraints on the dark matter-proton cross

section, as shown in Figure E.2. While in the public dark model case we set constraints on the Z′

couplings to quarks (gq) and dark matter (gχ) as shown in Figure E.3.
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Figure 7: Left panel: projected constraints on dark matter-proton spin-independent scattering
cross sections from the standard mono-jet analysis at the 14 TeV LHC with 100 fb�1 and the mono-
Z 0 jet-substructure based analysis. The model parameters are MZ0 = 1 GeV and g� = 1.0, and we
take the limits on ⇤ assuming 10% systematic error. Also shown are the current constraints from
direct detection experiments: LUX [69], SuperCDMS [70] and CDMSLite [71]. Right panel: similar
to the left panel but for dark matter-proton spin-dependent scattering cross sections. The current
experimental bounds are from: PICASSO [72], SIMPLE [73], PICO-2L [74] and IceCube [75].

from colliders into dark matter-nucleon scattering cross sections [6]. Since we have only considered
the example of an operator coupling to the up-quark, the �-proton and �-neutron spin-independent
scattering cross sections are different. We therefore scale the limits from spin-independent direct
detection experiments by a factor of 4A2/(A + Z)2 and show them in the left panel of Fig. 7.
Although the jet-substructure analysis from the mono-Z 0 can dramatically increase the sensitivity,
the direct detection experiments still provide the best limit for dark matter mass above 6 GeV. For
lighter dark matter mass, the collider will eventually provide the best limit. In the right panel of
Fig. 7, we show the limits on the spin-dependent scattering cross sections. As one can see, the collider
will provide the best limits for a wide range of masses until around 1 TeV even without considering
the mono-Z 0 signal. Under the assumptions above, the mono-Z 0 signature will significantly enhance
the discovery potential and easily compete with a next-generation spin-dependent dark matter
experiment such as PICO.

Finally, we note that in mapping the sensitivity for the cutoff scale ⇤ onto the direct detection
plane, the contribution from Z 0-mediated nucleon scattering has been neglected. For a GeV-scale
Z 0 with couplings to quarks & 10�5, such that the Z 0 decay is prompt on collider scales, then the
scattering rate through the Z 0 may be much larger than the quoted collider bound. For example, if
the Z 0 has vector interactions with the dark matter and quarks, then �SI-p ⇠ 10�40 cm2. However,
the direct detection cross section depends on the specifics of the Z 0 couplings and could also be
velocity-suppressed, so we do not include this.

12

Figure E.2: Left panel: Projected constraints on dark matter-proton spin-independent scattering
cross sections from the standard mono-jet analysis at the 14 TeV LHC with 100 fb1 and the mono-Z′

jet-substructure based analysis. The model parameters are MZ′ = 1 GeV and gχ = 1.0. Also shown
are the current constraints from direct detection experiments: LUX [88], SuperCDMS [89], and
CDMSLite [90]. Right panel: similar to the left panel but for dark matter-proton spin-dependent
scattering cross sections. The current experimental bounds are from: PICASSO [91], SIMPLE [92],
PICO-2L [93], and IceCube [94].
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Figure 9: Left panel: the 90% C.L. constraints on the light Z 0 couplings from the Tevatron [84]
with 1.96 TeV and 1.0 fb�1. The shaded region is excluded by the Z boson hadronic width at 90%
C.L. Right panel: the projected sensitivity at the 14 TeV LHC with 100 fb�1. The systematic error
is assumed to be 5%.

For the model at hand, the direct detection scattering cross section is dominated by the vector
coupling to quarks and we have the vector coupling to protons gV

p = 1
2gq and to neutrons gV

n = �1
2gq,

which is an iso-spin violating model. Neglecting the iso-spin form factor, we have the scattering
cross section of dark matter off a nucleus A

ZN as

�SI
�A =

(A � 2Z)2

⇡

g2
q g2

� µ2
�A

4 M4
Z0

, (19)

where µ�A is the dark matter-nucleus reduced mass. The (A � 2Z)2 factor provides an additional
suppression for experiments that have a target element with the same number of protons and
neutrons. For CRESST-II [78], among the three target elements both Oxygen and Calcium have
suppressed scattering cross sections for the dominant isotope. The third element, Tungsten, only
becomes sensitive when the dark matter mass is above 3 GeV [78]. Combined with the energy
threshold of 0.6 keV, the direct detection constraints on the model are weak for m� . 1 GeV, and
we do not consider them any further.

The hadronic width of the Z boson also constrains our model parameter space. Following a
similar calculation as in Refs. [79, 80], we have the summation of direct production of Z ! q̄qZ 0

16

Figure E.3: Left panel: the 90% C.L. constraints on the light Z′ couplings from the Tevatron with
1.96 TeV and 1.0 fb−1. The shaded region is excluded by the Z boson hadronic width at 90% C.L.
Right panel: the projected sensitivity at the 14 TeV LHC with 100 fb1. The systematic error is
assumed to be 5%.
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